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ABSTRACT

A decentralized suboptimal linear quadratic control design procedure

which combines substructural synthesis, model reduction, decentralized con-

trol design, subcontroller synthesis, and controller reduction is proposed for

the design of reduced-order controllers for flexible structures. The procedure

starts with a definition of the continuum structure to be controlled. An evalua-

tion model of finite dimension is obtained by the finite element method. Then,

the finite element model is decomposed into several substructures by using

a natural decomposition called substructuring decomposition. Each substruc-

ture, at this point, still has too large a dimension and must be reduced to a size

that is "Riccati-solvable." Model reduction of each substructure can be per-

formed by using any existing model reductions method, e.g., modal truncation,

balanced reduction, Krylov model reduction, or mixed-mode method. Then,

based on the reduced substructure model, a subcontroller is designed by an LQ

optimal control method for each substructure independently. After all subcon-

trollers have been designed, a controller synthesis method called Substructural

Controller Synthesis is employed to synthesize all subcontrollers into a global

controller. The assembling scheme used is the same as that employed for the

structure matrices. Finally, a controller reduction scheme; called the Equiva-

lent Impulse Response Energy Controller (EIREC) reduction algorithm, is used

to reduce the global controller to a reasonable size for implementation. The

EIREC reduced controller preserves the impulse response energy of the full-

order controller and has the property of matching low-frequency moments and

.°°

in



low-frequency power moments. An advantage of the Substructural Controller

Synthesis method is that it relieves the computational burden associated with

dimensionality. Besides that, the SCS design scheme is also a highly adapt-

able controller synthesis method for structures with varying configuration, or

varying mass and stiffness properties.
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Chapter 1

INTRODUCTION

Largely because the highly advanced space technology has made the con-

struction of large space structures possible in the very near future, the problem

of control of flexible structures has received a great deal of attention in recent

years. In fact, control of flexible structures has emerged as an interdisciplinary

research topic called Control/Structure Interaction (CSI), which attracts re-

searchers from both controls and structural dynamics areas. A number of

conferences and workshops specialized on control of flexible structures have

been held recently to promote technical exchange between the structural dy-

namics and control disciplines. Reference [31] provides a lengthy bibliography

to survey the developments of particular importance to dynamic modelling and

control of large space structures.

CSI problems involve combining advanced structural dynamics analysis

and identification techniques with advanced control methods. A major dif-

ficulty that makes control of flexible structures different from other control

problems is due to the fact that a flexible structure is a distributed system

and, hence, has an infinite number of degrees of freedom. This very nature of

structural systems hinders the direct application of the existing well-developed

control methods. Although there is a branch of study on the control of dis-

tributed systems[l, 27], its application is limited to simple structures llke beams



and plates,but it is not applicableto structureswith complicatedgeometry. In

practice,a structural systemis usually modelledby the finite elementmethod,

along with modifications basedupon system identification test data. For a

largespacestructure, e.g.,Fig. 1.1,sucha modelattains at least tens of thou-

sandsof degreesof freedom,which is a major computational task for dynamic

analysis not to mention too large a scale for control design. Therefore, for

the purposesof efficient computation and easycontrol implementation, model

reduction is an inevitable procedurefor dynamic analysisand control designof

large structures.

There are various open-loopmodel reduction approachesfor structural

dynamicssystems,suchasstatic condensation,Guyan-Ironsreduction, mode-

superpositionmethod, componentmode synthesis,and the Lanczosmethod.

The purposeof model order reduction is to construct a simplified but repre-

sentativemodel upon which a controller designcanbe based.

Although there is a wealth of new and sophisticated control methods,

e.g., H _ control theory, linear quadratic optimal control methodology (for

which Ref. [21] has a fine review) still is the one that has provided the most

complete multivariable design and synthesis theory yet available. For this rea-

son, LQ control theory is the method frequently used by control engineers to

design controllers for flexible structures. As mentioned before, it is not possible

to design an optimal LQ controller for a large scale structural dynamics sys-

tem because the size of the system exceeds the available computing capability,

i.e., the system is not "Riccati-solvable." Therefore, a traditional approach to

synthesize a controller for a flexible structure is to use a suboptimal. LQ design

strategy. A flow chart similar to the one in Ref. [2] is shown in Fig. 1.2 to
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Figure 1.1: Largespacestructure (CETF Phase1 Model)



summarizethe suboptimal LQ designprocedure. It is called a "centralized"

suboptimal LQ designprocedurefor a reasonto be clarified later.

Thereare threealternative centralizedsuboptimal LQ design approaches

illustrated in Fig. 1.2. All approaches begin with the definition of a continuum

structure, which theoretically has infinite dimension. An evaluation model of

order N, which is too large for controller design purposes, is obtained by the

finite element method. The objective of each of the three fundamental ap-

proaches is to synthesize a low order controller of dimension r << N. In the

first case (path A), the structure is reduced directly to order r and then an LQ

method is employed to produce a controller which is optimal for the r-th order

model. In the second case (path B), the structure is first reduced to a large

order n such that it is Still Riccati-soivable and an LQ controller can be synthe-

sized based upon the' n-th order model. The controller obtained is then reduced

to order r by employing some controller reduction method. This approach is

referred as Linear-Quadratic Reduction in Ref. [13]. Controller reduction by

Component Cost Anaiysis[45] and balanced controller reduction[9, 22, 28, 40]

belong to this approach. In the third case (path C), the structure is reduced

to order m (r < m _< n). Then, a parameter optimization method is used to

determine the controller of order r by minimizing some performance criterion.

The optimal projection method of Hyland and Bernstein[17] belongs to this

approach. The resulting r-th order controller is optimal for the m-order struc-

ture in that it is derived from a direct optimization of a steady-state quadratic

performance index for the closed-loop equations including the controller. For

all three cases, the last step is to apply the r-th order controller obtained to

the evaluation model for a stability study and performance evaluation.
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The most costly computing part in the suboptimal LQ design is the

synthesis of controller. Among the three alternatives, the computational bur-

den of path A is the lowest because the control design is of r-th dimension.

However, it requires an r-th order reduced model which can approximate the

input-output characteristics of the evaluation model very well. If r is very much

smaller than N, which is usually the case, the existing reliable model reduction

methods may all fail to meet this requirement. Therefore, path A is not a fa-

vorable approach and is not recommended. For the optimal projection method

(path C), the computational burden is very high because it requires iteration

to solve a coupled set of matrix Lyapunov and Riccati equations of dimension

m + r. These coupled Lyapunov and Riccati equations are derived from the

first-order necessary conditions for optimality. In general, convergence of the

iterative scheme is not assured, and the resulting solution is not guaranteed to

be globally optimal, especially when m is large. Therefore, the optimal projec-

tion method is strongly restricted by the available computing capability. Path

B seems to be the most reasonable approach among the three alternatives to

a suboptimal LQ controller design. It combines reliable plant model reduction

and controller reduction into an integrated approach for the control design of

large structures, as long as dimension of the reduced-order model, n, does not

exceed the computer capability for solutions of Riccati equations.

As mentioned before, the suboptimal LQ design procedure shown in Fig.

1.2 is classified as a centralized design scheme. The term "centralized" means

that the controller design is based on a reduced model for the "whole" struc-

ture. In this report, a decentralized control design scheme called Substructural

Controller Synthesis (SCS) is proposed for the controller design of flexible struc-



tures. A decentralized design scheme has advantages over a centralized design

in many respects.

1.1 Substructural Controller Synthesis

First, the definition of the term decentralized needs to be clarified. There

has been an increasing interest in decentralized control of large scale systems

in very recent years (see the literature included in Refs. [49] and [50]). In these

decentralized problems, the system to be controlled has several local control

stations with the controller of each station being constrained to measure only

local system outputs and control only local system inputs. In this sense, de-

centralized control means that "control implementation" is decentralized in the

sense that each local controller works independently. However, the interactions

among all local stations must be taken into consideration in the design of each

local controller in order to coordinate the overall performance, since, in actual

fact, all controllers are involved in controlling the whole system. The decen-

tralized control design scheme proposed in this section, is, rigorously speaking,

not a decentralized control, because the final controller employed to control

the system is a global controller, but not a group of local controllers. Nev-

ertheless, the control design is decentralized in that the global controller is

assembled from subcontrollers which are designed solely based on local system

input-output characteristics. Therefore, the Substructural Controller Synthe-

sis method proposed here is a decentralized control design scheme, but not a

decentralized control implementation scheme. This difference is pointed out

here to avoid confusion with the definition used by some decentralized control

researchers, although in some literature a global control implementation with



decentralized design is also called decentralized control, e.g., Ref. [20].

The procedure of Substructural Controller Synthesis is summarized by

the flow chart shown in Fig. 1.3. It is a suboptimal LQ control design with

controller design decentralized. The procedure starts with a definition of the

continuum structure to be controlled. An evaluation model of finite dimension

is obtained by the finite element method. Then, the finite element model is

decomposed into several substructures by using a natural decomposition called

substructuring decomposition. Substructuring decomposition is based on the

well-known property of structural dynamics systems: the system matrices of

the whole structure can be obtained by assembling the system matrices of sub-

structures. Although structural dynamics systems are frequently described in

matrix second-order form, substructuring decomposition is formulated in first-

order form since the control design is based on the first-order equation form.

Each substructure, at this point, still has too large a dimension and must be

reduced to a size that is Riccati-solvable. Any existing reliable model reduction

method can be employed to reduce the substructure, e.g., modal truncation,

component mode synthesis, or Krylov model reduction. Then, based on the re-

duced substructure model, a subcontroller is designed by an LQ optimal control

method independently for each substructure. The name subeontroller does not

imply a sub-controller, which works like a low authority controller, but is used

to indicate that it is a controller optimal to and designed for a substructure. Af-

ter all subcontrollers have been designed, a controller synthesis method called

Substructural Controller Synthesis (SCS) is employed to synthesize all subcon-

trollers into a global controller. The assembling scheme used is the same as

that employed for the structure matrices. Finally, a controller reduction scheme
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called Equivalent Impulse Response Energy Controller (EIREC) reduction al-

gorithm is used to reduce the global controller obtained to a reasonable size for

implementation.

The SCS method has many advantages over the traditional centralized

suboptimal LQ design approach. First of all, the computational burden associ-

ated with dimensionality is substantially reduced because the control design is

carried out at the substructure level, which is of smaller size than a structure

level control design. In a centralized suboptimal LQ design, the dimension of

the reduced structure model is restricted to an order for which solution of the

Riccati equation is possible. For the SCS design, this restriction is imposed on

substructures instead of the whole structure, which means the structure overall

is approximated by a reduced model of order equal to the sum of orders of all

substructures. An even bolder statement is that open-loop model reduction

is not required in SCS design if the structure is decomposed into hundreds of

small substructures, each of Riccati-solvable size. Secondly, the SCS controller

can be updated very economically if part of the structure changes. A space

structure like the one shown in Fig. 1.1 is a changing system because the space

shuttle docks and leaves, the solar panels change directions, and the payload

grows. For a changing structure like this, an SCS controller is highly adaptable

as long as an on-line computer can keep-up with the system changes. Since

the SCS controller is synthesized from subcontrollers, if one substructure has a

configuration or system parameter change, the only subcontroller which needs

to be redesigned is the one associated with that substructure. On the other

hand, for a controller based on a centralized design scheme, a slight change of

the structure may require a full-scale redesign.
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1.2 Preview

The organization of this report is as follows. The definitions, background,

and literature related to the problem of control of flexible structures are de-

scribed in Chapter 1. It also includes flow charts to describe the traditional

centralized suboptimal LQ design and a novel decentralized suboptimal LQ

design for the control of flexible structures.

In Chapter 2, the decentralized control design summarized in Fig. 1.3

is formulated. First, substructuring decomposition is defined for a general lin-

ear time-invariant system described in a first-order form. Then, it is shown

that substructuring decomposition is a natural decomposition for structural

dynamics systems. Based on the substructuring decomposition, a Substruc-

tural Controller Synthesis method is derived for the control design of flexible

structures. Two plane truss examples are used to study the performance of an

SCS controller.

In Chapter 3, some model reduction methods frequently used for struc-

tural dynamics systems are briefly reviewed. The methods reviewed are: modal

truncation, balanced reduction, balanced gain method, Krylov model reduc-

tion, and mixed-mode method.

In Chapter 4, an efficient controller reduction algorithm is developed.

The reduced-order controller is called an Equivalent Impulse Response Energy

Controller (EIREC) because it has the same impulse response energy as the full-

order controller. The proposed controller reduction method is, in fact, a model-

order reduction method applied to a controller. It is shown that the EIREC

controller has interesting and useful properties, such as moment-matching, re.in-
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imality, and stability. Efficacyof the proposedcontroller reduction is validated

by two examples.Comparisonof computational effort with existing controller

reduction methodsis also made.

Finally, in Chapter 5, a number of conclusionsare drawn. Recommen-

dations and future researchdirections are also addressed.



Chapter 2

SUBSTRUCTURING DECOMPOSITION AND

CONTROLLER SYNTHESIS

Although many decentralized control methods have been developed for

general linear systems, the application of decentralized control to flexible struc-

tures is stiII in its infancy. Most of the existing decentralized control methods

for flexible structures either adopt or extend the concepts and methodology de-

veloped for general linear systems. In Ref. [43], Young applies the overlapping

decomposition method, which was developed by Ikeda and _iljak for large scale

systems [18], to the control design for structures. In order for the overlapping

decomposition method to be applied effectively, Young developed an approxi-

mate finite element model for the structure resulting in a first-order equation

with system matrices in block tri-diagonal form. Later, in Ref. [44], Young

combined the well-developed Component Mode Synthesis (CMS) method, for

which Ref. [7] has an extensive review, with the overlapping decomposition

concept to develop a Controlled Component Synthesis (CCS) method. The

finite element models for the components are produced by an approach, called

Isolated Boundary Loading, which is based on the boundary stiffness and iner-

tia loading process of Benfield and Hruda [3]. The controller design is carried

out at the component level. Then the large complex structure is synthesized

from the controlled components. The idea behind the CCS approach is the

same as that behind the CMS method. However, the way the structure is de-

13



14

composed is not the same. Recently, in an attemp to simplify the decentralized

control design for structures, Yousuff extended the concept of inclusion princi-

ple, which was developed along with the overlapping decomposition method by

Ikeda et.al.[19], to systems described in matrix second-order form [48]. The sub-

structural model in Yousuff's work is an expanded component, i.e., the original

boundary of the component is expanded into the adjacent component, which

is similar to the substructure used in Young's CCS method. The expanded

component is a result of overlapping decomposition.

In this chapter, a decentralized control design process called Substruc-

tural Controller Synthesis (SCS) is proposed. First, a natural decomposition,

called substructuring decomposition, of structural dynamics systems is defined.

It is well known that for dynamics equations described in matrix second-order

form, the system matrices of the whole structure can be assembled from the

system matrices of substructures. Since the optimal control design is based on

the first-order equations, the substructuring decomposition method is formu-

lated in first-order form. It is shown that for dynamics equations in matrix

first-order form, it is still true that the system matrices of the whole struc-

ture can be assembled from the system matrices of substructures. Based on

substructuring decomposition of the structure, control design can be carried

out substructure by substructure. For each substructure, a subcontroller is de-

signed by an optimal control design method. Then, the global controller, which

is to be used to control the whole structure, is synthesized from the subcon-

trollers by using the same assembling scheme as that employed for structure

matrices. The final control implementation is centralized, which means the

final controller for implementation is a system controller. However, the control
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designis decentralized,becauseeachsubcontroller is designedindependently.

The substructure usedin the Substructural Controller Synthesismethod

is a natural component, i.e., not an expandedcomponentlike that in Young's

method. One advantageof using natural componentsis that SCScan be ef-

fectively incorporated with the ComponentMode Synthesismethod to design

controllers for large scalestructures. The substructurescan be modelled by a

CMS method and then assembledtogether to form an approximate model for

the whole structure. The subcontrollerscan be designedbasedon the CMS

substructures and can then be assembledtogether to form a global controller

for the whole structure. Another attractive feature of the SCS controller is

that it can beupdated economicallyif part of the structure changes.Sincethe

global controller is synthesizedfrom subcontrolIers, if one substructure has a

configuration or systemparameter change,the only subcontroller which needs

to be redesignedis the one associatedwith that substructure. Therefore, the

SCScontroller is, in fact, an adaptable controller for structures with varying

configuration and/or with varying massand stiffnessproperties.

The organizationof this chapterisasfollows. In Section2.1, substructur-

ing decompositionis definedfor agenerallinear time-invariant systemdescribed

by a first-order equation. It is shownthat all linear systemshave substruc-

turing decompositions,although there might not be an appropriate physical

interpretation for suchdecompositions. In Section 2.2, a substructuring de-

compositionfor structural dynamicssystemsis deveIoped.Then, basedon the

substructuring decomposition,a Substructural Controller Synthesismethod is

formulated in Section2.3. An LQGSCS Algorithm for the process of Substruc-

tural Controller Synthesis based on the LQG optimal control design method is
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established. Finally, in Section 2.4, a plane-trussexample is usedto illustrate

the applicability of the proposed method. The decentralizedcontrol design

approach for structural control developedin this chapter is summarizedby

Figure 1.3 in Chapter 1. Part of the material in this chapter is presentedin

Ref. [39, 38].

2.1 Substructuring Decomposition

Consider a linear time-invariant system described by

Sk = Az + Bu

y = Cz (2.1)

where z E R" is the state vector, u __ R t is the input vector, and y E /_ is

the output vector. S, A, B, and C are the system matrices with appropriate

dimensions. The difference between the above description and the conven-

tional state-space form of a linear system is the S matrix, which, of course,

can be eliminated if the state equation is premultiplied by S -1. There ex-

ist some linear systems, for instance, structural dynamics systems, which are

easier to analyze if the system is described in the form of Eq. (2.1). There-

fore, we consider Eq. (2.1), a more general form for the representation of linear

time-invariant systems. The conventional state-space form is a special case of

Eq. (2.1) with S equal to the identity matrix.

Next, consider another linear time-invariant system described by

= +

(2.2)
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with the system matrices in the following block diagonal form

S_

Zi ]As

•.•

A_

and

B1

B2

.

By

C1

C_

/zi}
Z2

Zv

lull
?2 2

l/v

/ }Y2

Y= !

y,,

The dimensions of the variables are zl E R _, ul E Rt',and y_ E R "_. It

is assumed that system (2.1) and system (2.2) have the same set of inputs

(_=1 Ii = l) and the same set of outputs (Ei_l ml = m). Therefore, it is

appropriate to use u and y in Eq. (2.2) as well as in Eq. (2.1)• Because of the

block diagonal form of the system matrices, system (2.2) is, in fact, a collection

of u decoupled subsystems

Sigi = Aizi + Biu_

yi = Cizi
i= 1; 2, ..., v (2.3)

Now let us define a substructuring decomposition. System (6.2) is said

to be a substructuring decomposition of system (2.1) if there exists a coupling

matrix T such that the following relationships hold

S = _r_ A = TT/IT B = 5bT/3 C = &T (2.4)
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and if the states of the two systems can be related by

_, = 7_z (2.5)

The above relationships merely state that the system matrices of system (2.1)

are assemblages of the system matrices of the subsystems in Eq. (2.3). There-

fore, system (2.1) will be referred to as the assembled system and system (2.2)

will be referred to as the unassembled system.

All multi-input multi-output systems are, in fact, substructurally decom-

posable. For instance,

[oA0]{z,}0 _S z2 0 _A Z2

Y = Y2 0 C2 z2

0 B2 u2

is a substructuring decomposition of system (2.1) for all a + fl = 1 if [B1 B2] =

B, [C T C T] = C T. The coupling matrix is T = [I_ In] T.

As another example, consider the system

[sllSl0$21 $22 $23 _2 =

0 $32 S_ _3
[AllA10]{zl}A2I A_2 Az3 z2

0 A3_ A_z z3

+ B21 B_2 Ul

0 Ba2 u2

/yll: cllc12o1{zl}Y = Y2 0 C22 C23 z2
Z3

(2.6)

which has block tri-diagonal system matrices. It can be shown that the above
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systemis an assemblageof the following two subsystems

Sll $12 zl A12

/3S22 $23 z2 /3A22 A23 -4-
$32 5'33 z3 = A32 A33 z3 B32

V2=[C22C23]{ z2 }z3

with the coupling matrix being

I 0 0

0 I 0

0 I 0

0 0 I

(2.7)

U2

(2.s)

and with the condition that a +/5 = 1. It is seen that z2 serves as the interface

state between the two subsystems.

For many real-world systems, there might not be a physical interpreta-

tion for the above substructuring decomposition, although mathematically it

can always be done. However, there do exist some systems which, by nature,

provide a strong physical motivation for such a substructuring decomposition.

Structural dynamics systems are the ones that interest us at this point.

2.2 Substructuring Decomposition of Structural

Dynamics Systems

In this section, the substructuring decomposition of a structural dynam-

ics system is formulated. Without loss of generality, we will consider a structure

composed of two substructures which have a common interface, as shown in
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Figure 2.1: Two-component structure

Figure 2.1. It is assumed that the control inputs and the measurement outputs

are localized. In the present context, "localized control inputs" means that the

actuators are distributed such that u_ is applied to the a-substructure only and

uz is applied to the/3-substructure only. "Localized measurements" means that

y_ measures only the response of the a-substructure and y_ measures only the

response of the/3-substructure.

Let the equations of motion of the two substructures be represented by

Mi_cl + Di_ci + Kixi = Piul
i = a, /3 (2.9)

Vi = Vizi + Wi_i

It is noted here that the above dynamics equations for the substructures do

not have to be exact (full-order) models. They can be approximate (reduced-

order) models obtained by any model reduction method, say a Component

Mode Synthesis method [7]. The dynamics of the the assembled structure (the

structure as a whole) is described by

M_, + D_, + Kx = Pu (2.10)

V = Vx + W_

Since the two substructures have a common interface and are parts of the

assembled structure, the displacement vectors of the substructures and the
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displacement vector of the assembled structure are related. There exists a

coupling matrix T which relates x,, za, to x as follows:

Given the coupling matrix T, it can be shown that the system matrices of the

assembled structure and the system matrices of the substructures satisfy the

following relations:

[ oo] o__[ o] [,o O
(2.12)

O P;3 ' O V_ W_ T

The above relationships can be proved by using the method of Lagrange's

equation of motion [6]. Therefore, it is an inherent property of structural dy-

namics systems that the system matrices of the assembled structure can be

obtained by assembling the system matrices of the substructures. This prop-

erty is, in fact, the essence of all "matrix assemblage" methods, e.g., the Finite

Element Method and Component Mode Synthesis. The above formulation is

based on the matrix second-order equation of motion. For control design pur-

poses, a first-order formulation which leads to a substructuring decomposition

of the structural dynamics system is required.

Let us rewrite the equation of motion (2.9) in the following first-order

form

Di _i 0

(S,) (:}i) (Ai) (zi) (Bi)

i = a, _ (2.13)

(c,) (z,)
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where the symbol under each matrix denotes that this equation corresponds to

Eq. (2.3). Similarly, Eq. (2.10) can be rewritten as

D k 0 x[
(S) (k) (A) (z)

{x}y = [v w]
(c) (z)

(B)
(2.14)

where the symbol under each matrix denotes that this equation corresponds to

Eq. (2.1).

Combination of the two substructure equations in Eq. (2.13) gives the

first-order equation of motion of the unassembled system in the form of

4

Eq. (2.2).

So 0 ko zo u_

(S) (S) (A) (_,) /_

(c)

(2.15)

It can be shown that the unassembled system (2.15) is a substructuring decom-

position of the assembled system (2.14). That is, (S, A, B, C) in Eq. (2.14)

and (S, A, B, C) in Eq. (2.15) satisfy the relations in Eq. (2.4). The state

vector of the assembled structure and the state vectors of the substructures are

related by a coupling matrix T as

ks

xo

kS

(_)

T_ 0

o %
T_ o
o T_
(_)

{:}
(z)

(2.16)
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2.2.1 Coupling Matrix

Physically, the coupling matrix 7_ that relates the state vectors of the

substructures and the state vector of the assembled structure simply describes

the compatibility conditions which must be imposed on the interface degrees of

freedom. Let zi represent the physical displacement coordinates of substruc-

tures i, and let the physical coordinates of the substructures in Figure 2.1 be

partitioned into two sets: Interior coordinates (I-set) and Boundary coordinates

(B-set), as shown in Figure 2.2.

a #
I I I I

Figure 2.2: Interior Coordinates and Boundary Coordinates

B
The displacement compatibility condition requires that x_ = zg. If the

displacement vector of the assembled structure is represented by

l}Xc_

X = 2_ B

x_

where x B is the vector of interface degrees of freedom, then the three displace-

ment vectors x_, x#, and x are related by

Xc_

{} -Xa X a

x# x_

_Z

I 0

0 I

0 0

0 I

0 I

X B
I
o _

[T_ ] (2.17)T# x
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with

leoo] [oo1]To-- 0 I 0 ' T_= 0 I 0

The velocity compatibility condition requires that x_"B = j:_, which leads to

xa -- Ta&, &p = TZ& (2.18)

Combination of Eqs. (2.17) and (2.18) shows that the state vectors of the

substructures and the state vector of the assembled structure are related by a

coupling matrix T as in Eq. (2.16).

In general applications, the x_, xz, and x vectors do not have to be de-

scribed in physical coordinates. For instance, in the application of Component

Mode Synthesis (CMS) method, dynamics of the substructures are represented

by a set of static modes called component modes. In this case, the column vec-

tors in the T_ and T_ matrices would be the representation of those component

modes. Even though the displacement vectors are in generalized coordinates in-

stead of physical coordinates, the compatibility condition can still be described

by Eq. (2.16).

2.3 Substructural Controller Synthesis

The derivation in this section is based on the two-component structure

in Section 2.2. The system is assumed to be subject to disturbance and obser-

vation noise. Therefore, the formulation is a stochastic case. At the end of this

section, a control design procedure called LQGSCS Algorithm is used to sum-

marize the Substructural Controller Synthesis scheme. The method proposed

can also be applied to a deterministic problem with only slight modification.
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First, let the dynamics of the assembled structure (the structure as a

whole ) in Figure 2.1 be described by

S_ = Az + Bu + Nw
(2.19)

y=Cz+v

where input disturbance w and output disturbance v are assumed to be uncor-

related zero-mean white noise processes. For a linear stochastic system with

incomplete measurement, optimal state feedback control design requires a state

estimator called Kalman filter to reconstruct the states for feedback. The state

estimator of a plant described by Eq. (2.19) has the form

S_1 = Aq + Bu + fO(y - Cq) (2.20)

where F ° is determined by solving a Riccati equation. If a feedback control

scheme u = G°q is incorporated with Eq. (2.20) to control the plant, the

estimator becomes a controller in the form

S_ = (A + BG ° - F°C)q + F°y
(2.21)

u = G°q

where superscript o denotes optimal design. The feedback gain matrix G ° is

determined by minimizing a performance index

1 T
J = lim _E[z Qz + uTnu] (2.22)

For structural control problem, the weighting matrix Q is usually chosen to be

Q=[Ko MO ] (2.23)

such that the first term in the performance index represents the total energy

of the structure

Qz= ½(xKx +
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For a purpose to be clarified later, the control weighting matrix R is chosen to

be

R_[Ro0R 0] /2.24 
The above centralized design scheme for a linear optimal compensator

is well known. Now, a decentralized controller synthesis method, called the

Substructural Controller Synthesis (SCS) method, will be formulated. The de-

velopment of the Substructural Controller Synthesis method is stimulated by

the substructuring decomposition and the Component Mode Synthesis method.

The plant to be controlled is first decomposed into several substructures by

the substructuring decomposition method. Then, for each substructure a sub-

controller is designed by using linear quadratic optimal control theory. The

collection of all the subcontrollers is considered as the substructuring decom-

position of a global controller which is to be employed to control the whole

plant. Finally, a coupling scheme the same as that employed for the plant is

used to synthesize the subcontrollers.

Let the dynamic equations of the two substructures in Figure 2.1 be

represented by

Siki = Aizi + Biui q- Niwi

Yi = Cizi + vi
i = 4,/3 (2.25)

With each substructure is associated a performance index

1 T

Ji = ,.-.._¢lim-_E[z i Q,zi + uT Riui] i = a, /3 (2.26)

with
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All the substructuresareassumedto be completelycontrollable andobservable

with the given performanceweightings and the noise distribution. For each

substructure,an LQG designcanbecarried out to obtain anoptimal controller

in the form

S_(t, = (A, + B,G ° - F°Ci)q, + F°y,

ui = G° qi
i = a, /3 (2.28)

The above optimal controllers are designed for the substructures. Therefore,

they are called subcontrollers. Supercript o in Eq. (2.28) denotes that each

subcontroller is optimal to its corresponding substructure.

In order to to show more clearly how the concept of substructuring de-

composition is employed to assemble the subcontrollers, the collection of the

two substructures is now considered as a single system, the unassembled sys-

tem. The dynamic equation of the unassembled system can be written in a

compact form

with

(2.29)
y=C_.+v

o sz ' o Az '

_=[N_0 N_ '0 ] _=[C,,0 C_0 ]

and

The distribution of the input noise is assumed to be substructurally decompos-

able, i.e., N = IFTN, so that system (2.29) is a substructuring decomposition
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of system (2.19). This assumption is not a serious restriction since, in general,

distribution and intensity of the noise are uncertain quantities. Therefore, for

design purpose, a reasonable assumption can be made by control engineers.

The performance index of the unassembled system is simply the summa-

tion of the performance indexes of the substructures

= Jo + J_ = lim 1E[_TQ_ +J uT Ru] (2.30)
lb--*_ Z

with

0 Q_ ' R_

It is noted that/_ is the same as the control weighting R in the performance

index of the assembled system (Eq. (2.24)). The (_ matrix and the state weight-

ing matrix Q in the performance index of the assembled system are related as

Q = _TQ_. This relationship can be proved by using the relations among

the stiffness and mass matrices of the substructures and the stiffness and mass

0 0]
matrices of the assembled structure as depicted in Eq. (2.12).

Ks 0
0 M.
0 0

0 0

[ TTK,,T,_ + T_KzT_= 0

[I_ 0]= 0 M -Q

0 0

0 0

K_ 0
o i,
0

T TIM_T_T_ M,,T, +

T_ 0

o %
Ta 0
o T_

By using the relations _, = Tz, Q = _TQ:_, and/_ = R, the performance index

of the unassembled system can be rewritten as

07 = ,--.oolim1E[zTTTQ,_'Z "b uT Iz_U]

= t-c_hm1E[z:rQz + uTRu]
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which is equal to the performance index of the assembled system. This equiva-

lence shows that with the weighting matrices Q and R chosen as in Eqs. (2.23)

and (2.24), the performance index is substructurally decomposable. However,

this is only a symbolic equivalence. Because the compatibility condition _ = _bz

is not enforced in the design of the subcontrollers, the values of ,] and J are,

in general, not equal.

The controller for the unassembled system is the collection of the two

subcontrollers in Eq. (2.28), which can be rewritten in a more compact form as

g_= (A + B_ ° - po_)_ + poy
(2.31)

= 5o4

with

[Go:][ ]_o 0 /_o F ° 0 (2.32)= a?, ' = 0 rg
It needs no proof that the unassembled controller, Eq. (2.31), is optimal for the

unassembled structure, Eq. (2.29), because the unassembled system matrices

are decoupled and each subcontroller is optimal for its corresponding substruc-

ture. Combination of Eq. (2.29) and Eq. (2.31) gives the closed-loop equation

of the unassembled system

0 g](q}=[ A/_o_,fi.+/}_o_/}(_°/_o&]({}+[N 0 /_o]{v} (2.33)

The last step is to assemble the subcontrollers by using the same coupling

scheme as used for assembling the substructures. The assembled controller for

the assembled system is represented by

SO = (A + BG _ - F_C)q + F_y

u = GSq
(2.34)
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with

F _ _ _T_O, G_ _ _o_ (2.35)

where superscript + denotes that the controller is not optimal but is considered

as suboptimal. The control design matrices F _ and G _ for the assembled

structure are obtained by assembling the optimal control design matrices F °

and G ° for the substructures by using the coupling matrix _F Under this

assembling scheme, it can be shown that the unassembled controller, Eq. (2.31)

is a substructuring decomposition of the assembled controller, Eq. (2.34).

If the assembled controller is employed to control the assembled struc-

ture, Eq. (2.19), the following closed-loop equation is obtained

[ ]{} ]{}S 0 _ A BG ® z + F _ (2.36)0 S il = F*CA+BG ®-F®C q v

The unassembled closed-loop equation, Eq. (2.33) is a substructuring decom-

position of the assembled closed-loop equation, Eq. (2.36), under the coupling

matrix [_F 0] Since the unassembled c°ntr°l system is an °ptimal design0T "

for the unassembled system, the assembled control system can be considered

to be suboptimal for the assembled system if it yields a stable design. A

suboptimality study similar to the one developed along with the overlapping

decomposition method [20] is a future research topic.

The coupling matrix 5F plays the major role in the above formulation of

the Substructural Controller Synthesis method. To have a clearer idea about

how the compatiblity condition _, = _Fz is involved in the SCS control design,

consider the following three optimization problems:
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Problem 1:

Minimize J = f0 °° l(zTQz2 + uTRu)dt

Subject to S_ = Az + Bu

Problem 2:

Minimize J = oo _.TQ z + uT_u)d t

Subject to S_" =/]2 +/3u

Problem 3:

Minimize J = fo _ I(_'TQ_2 + uT[lu)dt

= + ,}uSubject to _, = Tz

Problem 1 is the optimal state feedback control problem for the assembled sys-

tem. Problem 2 is the optimal state feedback control problem for the unassem-

bled system. The difference between Problem 3 and Problem 2 is that Problem

3 has one more constraint condition _"= Tz. Hence, Problem 3 is the optimal

state feedback control problem for the unassembled system with the compat-

ibility condition enforced on the boundary degrees of freedom, which means

that Problem 3 is, in fact, exactly equivalent to Problem 1. (Also recall that,

symbolically, ,7 is equal to J.) In the SCS design, it is Problem 2 instead of

Problem 3 that is solved to obtain the subcontrollers. Therefore, in some sense,

the SCS design method can be interpreted as simplifying the assembled optimal

control design problem (Problem 3) by throwing away some constraints (the

compatibility condition). After the optimal control law of Problem 2, u = (_o_,

is obtained, the compatibility condition is, then, imposed on the feedback law

to obtain the global feedback gain matrix Ge.

= Oos = = = a,z
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The above interpretation of the SCS method may give some helpful direction

to the suboptimality study in the future.

Closed-loop stability of a Substructural Controller Synthesis design is,

in general, not guaranteed. This is the same disadvantage that most indirect

control design methods have. Indirect control design means that the controller

is not designed based upon the exact full-order structure but is based on an

approximate model or reduced-order model. From the form of Eq. (2.36), it

is seen that the separation principle is applicable to the SCS control system.

The closed-loop poles of the assembled system are the union of the regulator

poles (eigenvalues of S-'(A + BG+)) and the observer poles (eigenvalues of

S-I(A- F+C)). Therefore, stability of the assembled closed-loop system can

be checked by examining the locations of these two sets of eigenvalues.

One advantage of using Substructural Controller Synthesis to design a

controller is that an SCS controller is highly adaptable. For a structure with

varying configuration or varying mass and stiffness properties, like some space

structures, the Substructural Controller Synthesis method may be especially

efficient. The SCS controller can be updated economically by simply carrying

out redesign of subcontrollers associated with those substructures that have

changed. On the other hand, for a controller based on a centralized design

scheme, a slight change of the structure may require a full-scale redesign.

This favorable decentralized feature of the Substructural Controller Synthe-

sis method is similar to that of the Component Mode Synthesis method in the

application to model modification. It is emphasized again that the dynamic

models of the substructures do not have to be exact models. They can be ap-

proximate (reduced-order) models obtained by a Component Mode Synthesis
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method or any existing model reduction method, e.g., the methods reviewed

in Chapter 3. If the subcontroller is designed based on an approximate sub-

structural model, then it is not optimal to the substructure. Nevertheless, the

aforementioned decentralized feature is still true.

The following algorithm summarizes the Substructural Controller Syn-

thesis scheme, with the LQG optimal control theory as the design basis.

Algorithm 2.1 (LQGSCS Algorithm)

(1.) Set up the LQG problem for the assembled structure.

Sk = Az + Bu + Nw

y=Cz+v

Minimize J = lim E[zTQz + uTRu]
t --.+oo

(2.) Construct a substructurin9 decomposition of the LQG problem in (1).

y =C_.+v

Minimize j = lira E[ TO + uTRu]
f_-..* oo

S = _7" _ A = TTAT B = :_T [7 C -- CT

N = _T_, Q = _T(_ _ = 7"z J = J

Due to the decoupling of the substructuring decomposition, the unassembled

LQG problem can be split into u substructure-level LQG problems:

Sikl = Aizi + Biui + Niwi

yi = Cizi + vi i = 1, 2, ..., u

Minimize Ji = lim E[zSQizi + u_R4ui]
t..-* oo

where
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(3.) Carry out an LQG design to obtain an optimal subcontroller for each sub-

structure in (2).

S, il, = (Ai + B,G ° - Fi°C,)q, + F°y,
i=l, 2, ..., u

ui = G° qi

where F ° and G ° are obtained by solving Riccati equations.

(4.) By using the coupling matrix 7", assemble all the subcontroIlers to obtain a

9lobal controller.

S_ = (A + BG _ - F_C)q + F_y

u = G¢q

where G _ = _o_, F _ = _TDo with 0 ° = diag[ G ° ] and D ° = diag[ F[' ].

(5.) Calculate the eigenvaIues of S-a(a + BG ¢) and S-a(A - F®C) to check

closed-loop stability.

A similar algorithm can be developed for the deterministic case. The

only difference between the LQRSCS algorithm (for the deterministic case)

and the LQGSCS algorithm (for the stochastic case) is that a pole assignment

scheme is required to determine the Fi° matrices in the former case.

2.4 Examples

In this section, two plane truss structure examples are used to demon-

strate the applicability of the Substructural Controller Synthesis method. The

first example has two identical substructures and almost-colocated sensor and

actuator allocations. The second example is a more general case.
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2.4.1 Identical Substructures With Almost-Colocated Sensor And

Actuator Allocations

The truss structure considered is depicted in Figure 2.3, which consists

of six bays and has twenty degrees-of-freedom. Two force actuators and two

displacement sensors are allocated symmetrically at f and d, respectively. The

actuators are contaminated by disturbances with intensity 10 -3 . The sensors

are contaminated by noises with intensity 10 -12 . These levels of noise intensi-

ties are chosen arbitrarily just for the purpose of example study, and are not

justified by the experience of any real case. (In Ref. [45], there is an example

with input noise intensity 10 -4 and output noise intensity 10-15.) All distur-

bances are assumed to be uncorrelated zero-mean white noise processes. The

mass and stiffness matrices for the structure are obtained by the finite element

method. The damping matrix is chosen to be 1/1000 of the stiffness matrix.

The eigenvalues of the open-loop system have damping ratios ranging from

0.05% to 1.5%. The structure is divided into two substructures as shown in

Figure 2.3.

SCS control design has been carried out and compared with the full-order

optimal controller for five different cases. Conditions, assumptions, formula-

tions, and results for the five cases studied are summarized in the following.

Case 1: (Two-input and two-output)

For this case, the two substructures are identical due to symmetry.

Therefore, only one substructural level control design need be carried out. The

other subcontroller can be obtained by using symmetry. The results are shown

in Table 2.1 and Figure 2.5, in which R is the weighting of control cost in the
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f f

30

6@40=240 vt

pA-I EA=I.0E+5

to

Figure 2.3: Details of the plane truss for the SCS design example (identical

substructures and colocated sensor/actuator allocations)

performance index. It is seen that the SCS controller has a near-optimal per-

formance. The performance value of the SCS controller is less than 4% higher

than the performance value of the optimal controller. The substructures and

subcontrollers for this case are symbolically represented by the following equa-

tions.

Left substructure

Slz'l = Alzl + Blul + Blwl

Yl = Clzl + vx

Left subcontroller

Right substructure

$2_'2 = A2z2 + B2u2 + B2w2

V2 = C2z2 + v2

Right subcontroller

$1(_1=(A1 + BIG°-F°C1)ql + F°Y, $2i12=(A2 + B2G°-F°C2)q2 + F°Y2

ul = G° ql u2 = G_ q2

Case 2: (Single-input and two-output)

Assume that the actuator on the right substructure has malfunctioned.
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In this case, the right substructure is, in fact, not controllable since there

is no actuator on it. However, the right sensoris still functioning and can

collect information about the state of the right substructure. Therefore, an

observer for the right substructure is designedand is called the generalized

subcontroIIer for the right substructure, although there is really no control law

involved. The design of the left subcontroller is the same as that for Case 1. The

global controller is obtained by assembling the right generalized subcontroller

and the left subcontroller. Comparisons of the SCS controller and the full-

optimal controller for this case are summarized by Table 2.2 and Figure 2.6.

Again, it is seen that the SCS controller is near-optimal. The substructures

and subcontrollers for this case are symbolically represented by the following

equations.

Left substructure Right substructure

Sxkl = A_zl + Blul + Bxwl $2_'2 = A2z_ + B_ro2

Yl = ClZl "_ U1 Y2 : C2z2 -_- u2

Left subcontroller Right generalized subcontroller

S1_1 = (A1 + BIG ° - F°G)ql + F°yl &O_ = (A_ - r_C_)q_ + r°U_

ul = G° ql

Case 3: (Single-input and single-output)

Assume that both the actuator and sensor on the right substructure have

malfunctioned. In this case, the right substructure is neither controllable nor

observable. The generalized subcontroller for the right substructure is defined

by the state equation that describes the right substructure itself. The results

of this case are summarized by Table 2.3 and Figure 2.7, which show that the

SCS controller is near-optimal. The substructures and subcontrollers for this
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caseare symbolically representedby the following equations.

Left substructure Right substructure

$1_1 = Alzl + Blul + Blwl $2_'2 = A2z2

Yl = Clzl + vl

Left subcontroller Right generalized subcontroller

Sial = (A_ + B_G_ - F_C_)qI + F_yl $2?12 = A2q2

ul = G° ql

Case 4: (Two-input and single-output)

Assume that the right sensor has malfunctioned. In this case, the right

substructure is not observable. The generalized subcontroller for the right

substructure is defined to be a full-state feedback controller, although there is

really no state estimator available. Comparisons of the SCS controller and the

full-order optimal controller are summarized by Table 2.4 and Figure 2.8. It

is seen that the performance of the SCS controller for this case is not so good

as that for the previous three cases. The substructures and subcontrollers for

this case are symbolically represented by the following equations.

Left substructure

$1£q = Alzl + BlUl + Blwl

yl = Clzl + vl

Left subcontroller

S, ih -- (A, + B,G ° - r°Ci)q, + f y,

= G° ql

Right substructure

S_2 = A2z2 + B2u2 + B2w2

Right generalized subcontroller

$202 = (m2 + B2G?)q2

u2 = G° q2

Case 5: (Two-input and single-output, right substructure free of noise)

We suspect that the poor performance of the SCS controller in Case

4 is due to the fact that there is not an observer to filter the noise on the
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right substructure. Therefore,as another casefor study, we considerthe same

actuator/sensor configuration as that of Case 4, but assumethat the right

substructure is free of disturbance. The results are summarizedby Table 2.5

and Figure 2.9. As we can see,the SCScontroller for this case has a near-

optimal performance. The substructures and subcontrollers for this case are

symbolically represented by the following equation.

Left substructure

$1_1 = Alzl + Blul + Blwl

Yl = CI zl + vl

Left subcontroller

$1_ = (A_ + BIG_ - F°C_)ql + F_y_

ui = G° ql

Right substructure

$2_2 = A2z2 + Bsu2

Right generalized subcontroller

Ssils = (As + BsG°)qs

us = G° q2

From the results of the above five cases, it is seen that the performance

of the SCS controller is, in general, near-optimal. The only case that the

SCS controller exhibited a poor performance is Case 4, in which the right

substructure is subject to disturbance but has no output measurement as a

feedback to filter the noise. A conclusion from the study of Case 4 and Case 5 is

that an estimator is required for each substructure subject to noise disturbance

in order to obtain a near-optimal SCS controller.

2.4.2 Unsymmetric Case

The second example is a more general case. The structure considered is

a sixteen degree-of-freedom plane truss structure as shown in Figure 2.4. The

structure is decomposed into two substructures in order to perform the SCS

design. There are two sensors located on bar elements denoted by s and two
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actuators located on bar elements denoted by a. The sensors are strain gauges

that can measure the strains in the bar elements. The actuators are load cells

that can control the relative displacements of the two ends of the bar elements.

No attempt was made to optimize the locations of sensors and actuators. It

is assumed that the actuators are contaminated by disturbances with intensity

10 -3 and the sensors are contaminated by noises with intensity 10 -9 . The

damping matrix is equal to 1/1000 of the stiffness matrix. The corresponding

system damping factors range from 0.07% to 1.0%.

a: actuator S: sensor

I_, 60@5=300 _l Ir

EA = I ,E+5, pA= 1.0

Figure 2.4: Details of the plane truss for the SCS design example (unsymmetric

case)

The results are summarized in Table 2.6 and Figure 2.10. It is seen that

the performance curve of the SCS controller for this example is not as close to

the optimal performance curve as that for the symmetric case in the previous
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subsection. However, the performance values in Table 2.6 still show that the

SCS controller is near-optimal. It is also noted that for large control bandwidth

(small R), the SCS controller tends to deviate further from the optimal one.

Although further examples must be examined before any general conclu-

sions can be reached about the efficiency of the proposed SCS controller design

procedure, the results of the above two examples are very encouraging. Exam-

ples which apply SCS design to reduced-order substructure models definitely

must be considered.
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Table 2.1: Performance values of Case 1

R= 0.01 0.05 0.1 0.5 1 5 10

Optimal 1.1737E-4 1.7796E-4 2.1445E-4 3.3929E-4 4.1689E-4 6.7621E-4iS.3436E-4

SCS method 1.2155E-4 1.8168E-4 2.1856E-4 3.4522E-4 4.2385E-4 6.8522E-4 8.4451E-4

Difference 3.6% 2.1% 1.9% 1.7% 1.7% 1.3% 1.2%

Table 2.2: Performance values of Case 2

R= 0.01 0.05 0.1 0.5 1 5 10

Optimal 7.6963E-5 1.1228E-4 1.3449F__ 2.1154E-4 2.5916E-4 4.1879E-4 5.1610E-4

SCS method 7.9660E-5 1.1442E-4 2.1342E-4 2.6109F_,-4 4.2213E-4 5.2082E-4

Difference 3.5% 1.9%

1.3654E-4

1,5% 0.89% 0.74% 0.79% 0.91%

Table 2.3: Performance values of Case 3

R= 0.01 0.05 0.1 0.5 1 5 10
1

Optimal 7.7358E-5 1.1255E-4 1.3472E-4 2.1168E-4 2.5927E-4 * 5.1618E-4

SCS method 7.9850E-5 1.1450E-4 1.3659E-4 2.1344E-4 2.6112E-4 4.2213E-4 5.2082E-4

Difference 3.2% 1.7% 1.4% 0.83% 0.71% * 0.90%

* CTRL-C encountered difficulty in solving Lyapunov equation for full-order optimal

design.
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Table 2.4: Performance values of Case 4

R= 0.01 0.05 0.1 0.5 1 5 10

Optimal 1.3742F_,-4 1.9240E-4 2.2709E-4 3.4887E-4 4.2544E-4 6.8283E-4 8.4029E-4

SCS method 5.3709E-4 6.6359E-4 7.0535E-4 7.9789E-4 8.4867E-4 1.0293E-3 1.1520F,-3

Difference 291% 245% 210% 129% 99% 51% 37%

Table 2.5: Performance values of Case 5

I

R= 0.01 0.05 0.1 0.5 [ 1 5 10

Optimal 5.9433E-5 8.9437E-5 1.0763E-4 1.6989F_,-4 2.0863F_,-4 3.3822E-4 4.1726F_,-4

SCS method 6.1968E-5 9.1607E-5 1.0989E-4 1.7296F_,-4 2.1219E-4 3.4275F_,-3 1.1520F_,-3
.... iI

Difference 4.3% I 2.4% 2.1% 1.8% 1.7% 1.3% 1.2%
I
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Table 2.6: Comparison of full-order optimal controller and SCS controller

°' Ju Je J

(Control cost) (Regulation cost) (Performance value)

R=0.0001 1.6610E-2 4.5665E-4
8.1847E-3 5.4403E-4

R=0.001

OPT

SCS
Difference

OPT 4.4901E-3 4.6026E-4

4.5831E-4

5.4485E-4

19%

4.6475E-4

R=O.O1

R=0.05

R=O.1

R=0.5

R=I.0

R=5.0

R=IO.O

R=100.0

SCS

Difference

OPT

SCS

Difference

OPT

SCS

Difference

OPT

SCS

Difference

OPT

SCS

Difference

OPT

SCS

Difference

OPT

SCS

Difference

OPT
SCS

Difference

OPT
SCS

Difference

3.2463E-3

1.6198E-3
1.3719E-3

6.8176E-4

5.6477E-4

4.1564E-4

3.4963E-4

8.8571E-5

7.8312E-5

3.6711E-5

3.3248E-5

2.8869E-6
2.7541E-6

8.2542E-7
8.0024E-7

9.5865E-9

9.5056E-9

5.4472E-4

4.6930E-4

5.4458E-4

4.9123E-4

5.5462E-4

5.1007E-4

5.6574E-4

5.8016E-4

6.1235E-4

6.1606E-4

6.3803E-4

6.7877E-4

6.8520E-4

6.9266E-4
6.9609E-4

7.0794E-4
7.0831E-4

5.4800E-4

18%

4.8550E-4

5.5830E-4

15%

5.2532E-4

5.8286E-4

11%

5.5163E-4

6.0070E-4

9%

6.2444E-4

6.5151E-4

4%

6.5277E-4

6.7128E-4

3%

6.9320E-4

6.9897E-4

0.8%

7.0091E-4

7.0409E-4

0.4%

7.0900E-4

7.0926E-4

0.05%





Chapter 3

MODEL REDUCTION OF FLEXIBLE

STRUCTURES

A central issue in the active control of flexible structures is to derive a

high-fidelity mathematical model to be used as a basis for dynamic analysis

and control design. Although a flexible structure is by nature a distributed-

parameter system, for analysis purposes it can be modelled as a finite dimension

system by using the Finite Element Method or other discretization approaches.

However, for a complex structure, e.g., large space structure like the Space

Station Freedom, the Finite Element model usually attains thousands, or tens

of thousands of degrees of freedom, which is a major computational task for

dynamic analysis not to mention too large a scale for control design. Therefore,

for the purposes of efficient computation and easy control implementation,

model reduction is an inevitable procedure for dynamic analysis and control

design of large space structures. Another fact about space structures is that

most space structures will be built with light weight components and will thus

tend to be very flexible with closely-spaced frequencies and very light damping.

In this chapter, several frequently used model reduction methods are

reviewed. Among a myriad of the existing model reduction methods for struc-

tural dynamics systems, modal truncation may be the most popular approach.

Modal representation has many advantages: modal frequencies represent reso-

nances of the structure, equations of motion are uncoupled implying saving of

48
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computation time, and modal data canbe identified and validated by vibration

test. However,selectionof modesto be retained in the reducedmodelmay not

be an easytask. The simplest approachwould be to include all modeswithin

the frequencyrangeof interest. For a largespacestructure with closely-spaced

frequencies,this simplest approachmay producea reducedmodel whosesize

is still too large to handle.

An efficient modal truncation criterion is basedon balanced singular

values. It is shown in Refs. [14] and [23] that if frequenciesare sufficiently

separatedand modal damping is very small, then modal representationof a

structural dynamics system is approximately balanced. Therefore, approxi-

mate balancedsingular valuescan be calculated by using modal parameters

and balancedmodel reduction canbe performedon modal coordinates. Other

than singular values,Kabamba introduced an L 2 model reduction basis called

balanced gain[24]. In this chapter, an approximate balanced gain for a struc-

tural dynamics system is expressed in terms of modal parameters by using the

balanced form derived in Ref. [14]. The balanced gain approach can produce

more accurate reduced models in the L 2 sense.

In addition to normal modes, there are other Ritz vectors superposition

methods for dynamic analysis of structures. The authors presented a Krylov

model reduction algorithm in Refs. [36, 37]. Krylov vectors are system static

modes generated by a recurrence procedure. In Refs. [30] and [42], similar

Ritz vector approaches are proposed for structural dynamic analysis. Recently,

several numerical experiments have shown that by augmenting a modal basis

with some Ritz vectors, fidelity of the reduced model can be substantially
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improved[25]. Suchapproachwill be referred to in this chapter as the mixed-

modemethod.

This chapterisorganizedasfollows. The Model ReductionSectionbriefly

reviewsmodal truncation, balancedmodel reduction, balancedgain approach,

Krylov model reduction, and Ritz vectorsand mixed-modemethod. Then, a

plane truss structure with closely-spacedfrequenciesand light modal damp-

ing is usedto comparedifferent reduced-ordermodels. Open-loop comparison

includes the L 2 error norm of the impulse response function and approxima-

tion of the output frequency response function. The control design comparison

includes closed-loop stability and control performance. The material in this

chapter was presented in an international conference on dynamics of flexible

structures in space[8].

3.1 Model Reduction

In this section, several frequently used model reduction methods for

structural dynamics systems are briefly reviewed.

3.1.1 Modal Truncation

Let a structural dynamics system be described by the following input-

output equations

M$ + Dk + Kx = Pu

y = Vx + Wk

xE R", uER z

Y • R_ (3.1)

where M, D, and K are the system mass, damping, and stiffness matrices

respectively; P is the force distribution matrix; and V and W are the displace-

ment and velocity sensor distribution matrices respectively. If the damping
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matrix D is proportional, then the above structure model can be transformed

into standard modal form as follows:

+ 2ZA_ + A_? = d2Tpu (3.2)
y = V_r/+ W(I)_

where (b is the matrix of mode shapes, A = diag[._i] is the diagonal matrix of

modal frequencies, and Z = diag[_] is the diagonal matrix of modal damping

factors. A simple and frequently used approach to structure model reduction is

modal truncation, which retains dominant normal modes in the reduced model.

Selection of dominant modes, however, is not as easy a task as it seems to be

and requires experienced engineering judgement. The simplest approach is to

retain all the modes within the frequency range of interest.

3.1.2 Balanced Reduction

by

For an asymptotically stable, linear, time-invariant system represented

£, = Az + Bu

y = Cz (3.3)

the controllability and observability gra.mmians are solutions of the two Lya-

punov equations

AWe + WcA T + BB T = 0

ATWo -F WoA + CTC = 0 (3.4)

Neither grammian is invariant under similarity transformation. It is shown in

Ref. [29] that there always exists an equivalent system for which the grammians

are diagonal and equal, We = Wo = _ = diag[ai]. The quantities ai's are called

second-order modes or singular values of the system. A system representation

with equal and diagonal grammians is called internally balanced. Balanced
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model reduction deletessystem state variables associatedwith the smallest

singular values. It is interpreted that thosestates associatedwith small sin-

gular valuesrequire large effort to control and contribute little to the system

output. In this sense,balancedmodel reduction retains the most controllable

and observablepart of the systemin the reduced model. Enns showed in Ref.

[11] that there exists an oo-norm frequency error bound

]] n(jw)- Ur(jw) I1_<_ 2 __, a, r < n (3.5)
i-----r+l

where H(jw) = C(jwI- A)-'B is the transfer function matrix of the full-order

model and Hr(jw) is the transfer function matrix of the r-th order reduced

model obtained by retaining the first r singular values.

Recently, Gregory[14] and Jonckheere[23] independently showed that

for a flexible structure described by the modal equation (3.2), if the system

damping ratios are sufficiently small (_'i << 1) and the system natural frequen-

cies are well separated (The criterion on separation of frequencies is given by

max (_i, _j)max(._i, Aj ) /IAi - )_jl << 1.), then the modal model is approximately

balanced. The approximate balanced singular values can be expressed in terms

of the modal parameters as follows

a, ._ _/pip[(,,,_v, + _wTw, )
4¢A_ (3.6)

where Pi is the i-th row of _Tp matrix, and vi and wi are the i-th columns of the

V(I' and W(I, matrices respectively. It is shown in Ref. [4] that the approximate

balanced singular value in Eq. (3.6) is equal to one-half of the peak magnitude

of the transfer function at resonant frequencies. Therefore, modal truncation

based on singular values preserves modes with largest peak magnitude in the

transfer function..
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3.1.3 Balanced Gains

Assume that the system described by Eq. (3.3) is internally balanced and let

bi denote the iith row of B matrix and ci denote the i-th column of C matrix.

Balanced gain is defined by Kabamba in Ref. [24] as gi = brb_ = c_cT. (bTbi =

c_cT is a property of the balanced realization and can be proved easily by using

Eqs. (3.4) and Wc = Wo = E.) Kabamba showed that singular values do not

give enough information for model reduction in the L 2 sense. By defining the

following inner product and norm of the impulse response function matrix

(h,, h_) - tr[]o _ ha(t)h_(t) dt]
(3.7)

IIh ILL2=(ha,h2) 1/2

it can be shown that for an internally balanced system

II h - hr IlL2-> (Y_ _r,g,)1/2 - ( __, a,g,) 1/2 (3.8)
i=1 i=r+l

where h and hr are the impulse response function matrices of the full-order

model and the reduced-order model respectively. From Eq. (3.8), we see that

it is the product o'ig i instead of ai alone that serves as a truncation basis for

L 2 model reduction.

For structural dynamics systems, the balanced gain for mode i can be

obtained by combining the definition of Kabamba[24] and the derivation of

Gregory[14].

 /p,pT(vT.,+ 2,_iw_ wi)
gi = )q (3.9)

Therefore, according to Eq. (3.8), an L 2 norm modal truncation for structural

dynamics systems should be based on

p,pT (vTv, + ,_wrw,)
a'g_ = 4_i)_ (3.10)
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It is noted that the abovemodal truncation basisis exactly the sameas Skel-

ton's modal cost analysis truncation basis derived basedon the contribution

of each mode to the output energyfor an impulse input[4, 34]. For modal

cost analysis, if a structure's natural frequenciesarewidely-spacedand modal

damping approacheszero, the total cost can be decomposedinto a sum of

modal costs,which are equal to aigi in Eq. (3.10).

3.1.4 Krylov Model Reduction

Su and Craig proposed in Refs. [36, 37] a Krylov model reduction algorithm for

structural dynamics systems. Basically, Krylov model reduction is an extension

of the Lanczos method in Ref. [30] to structural control problems. A Krylov

reduced model is obtained by projecting the system dynamic equation onto a

subspace called Krylov subspace, which is spanned by a set of vectors called a

Krylov vectors. Krylov vectors are generated by a simple recurrence procedure.

For undamped structural dynamics systems, the Krylov procedure is

Qj+I = K-IMQj (3.11)

For damped systems, the Krylov procedure is

]{}Oj+l = -K-1D -K-1M O_ (3.12)
Q'j+, I o

With starting vectors appropriately chosen as the system's static deflection

due to force and sensor distribution matrices, the Krylov vectors generated

by the above procedures can form a basis to produce reduced-order mod-

els with parameter-matching properties. Parameter-matching methods con-

stitute a class of efficient model reduction methods for linear systems[41].
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Krylov model reduction is essentiallya second-orderformulation of parameter-

matching model reduction method for structural dynamicssystems.A Krylov

reducedmodel matchesa set of system parameterscalled low-frequency mo-

ments. For a linear time-invariant system described by Eq. (3.3), low-frequency

moments are defined by CA-_B, i = 1, 2, ..., which are coefficient matrices

in the Taylor's expansion series of system transfer function H(jw). By match-

ing low-frequency moments, the reduced-order model produces accurate steady

state step input response and approximates the lower natural frequencies of

the full-order model. Another interesting feature about Krylov reduced mod-

els, as indicated in Ref. [36], is that for structural control design, the Krylov

formulation can eliminate control and observation spillovers, but manifests dy-

namic spillover terms. This is the basic difference between the Krylov reduction

method and the traditional modal truncation methods.

3.1.5 Ritz Vectors and Mixed-Mode Method

Although modal truncation may be the most frequently used reduction

method, as stated in Ref. [42] there exists no proof that the use of normal

modes in mode superposition analysis is better than any other set of Ritz

vectors. (Ritz vector is a general terminology for assumed mode or static

mode.) On the other hand, it is also true that one cannot assure that a basis

formed solely by Ritz vectors can serve as a better truncation basis than normal

modes. Recently, many numerical experiments have shown that by augmenting

the normal mode basis with some suitably chosen static modes or Ritz vectors,

accuracy of dynamic analysis usually can be substantially improved [5, 25].

Static modes are a system's deflection shapes associated with imposed force
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distribution vectors. Krylov vectorsand Lanczosvectorscanall be considered

to be system static modes. By using an rms error estimate, Kline provided

severalexamplesin Ref. [25] to show that the addition of static modes to the

modal basis can indeed enhance fidelity of reduced-order models for analysis

of structural response under the action of time-dependent forcing vectors. The

addition of some static modes to the normal mode basis to perform model

reduction will be called a mixed-mode method.

3.2 Plane Truss Example

A plane truss structure with closely-spaced frequencies and very small

modal damping is used to compare the model reduction methods reviewed in

the previous section. Figure 3.1 shows the structure's geometry and material

properties, which are chosen to be nondimensional and such that the plane

truss represents a very flexible structure with closely-spaced frequencies. The

structure has twenty-four degrees of freedom. The damping matrix is chosen to

be proportional with 0.1% damping ratio for all modes. The structure's natural

frequencies, listed in Table 3.1, range from 1.8677(Rad/sec) to 12.992(Rad/sec).

The frequency response function in Figure 3.2 shows that the system natural

frequencies are clustered. There is a force actuator applied at "f" and a dis-

placement sensor located at "a". Since the assumption of sufficiently separated

frequencies is violated for this example (¢A_/A is 0.1 for modes 1 and 2, 0.7 for

modes 8 and 9, and 0.15 for modes 17 and 18, which are not very much smaller

than 1), the modal representation cannot be considered as approximately inter-

nally balanced. However, for analysis and design purpose, we can still proceed

with modal truncation by retaining only modes with largest singular values or
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balancedgains. The approximatebalancedsingular valueand balancedgainfor

eachmode calculated by using Eq. (3.7) and Eq. (3.10) respectivelyare sum-

marizedin Table 3.2. The balancedreduction criterion requ!resthat _ri>>cri+l

sothat the modelcan be truncated at o'i. For this example, there is not an ob-

vious cut-off point, which means that it is necessary to preserve a large portion

of the system modes in order to produce a high-fidelity reduced-order model.

3.2.1 Open-Loop Comparison

First, error norms of the impulse response function matrix are compared

for different reduced-order models. Let (A, B, C) denote the full-order system

model and let (At, Br, C,) denote the reduced-order system model. The im-

pulse response function matrices for the full-order model and the reduced-order

model are h(t) = CeatB and h,(t) = C_ea'tB, respectively. An easy way to

calculate the error norm of the impulse response function matrix is by solv-

ing Lyapunov equations. Let the inner product and norm of impulse response

function matrix be defined by Eqs. (3.7). Then, the difference between h and

h, can be calculated by

11h - hr ILL2= tr(BTWoB) + tr(BTWo.B,)- 2BTXB

where 14/o and Wo, are observability gramrnians of the full-order and reduced-

order models respectively, and X is the solution of

Ar_X + XA + CTC = 0

The error norm is defined by

Err --
I1h- hr IlL2
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The results of the impulse response comparison are summarized in Table

3.3. As expected, the balanced gain approach produces reduced-order models

that approximate the impulse response better than any other truncation cri-

terion. Modal truncation based on hi, which means by retaining the lowest

frequency modes, shows that for an 18th-order model, which contains three-

fourth of the system's modes, there is still a 15% error. For this example,

Krylov reduced models are poor in tracking the impulse response. The mixed-

mode reduced model in Table 3.3 is obtained by augmenting the balanced gain

modal basis with two Krylov modes. It is seen that the inclusion of Krylov

modes in the modal basis for model reduction does not improve accuracy in

simulating impulse response.

Next, we compared the system's output frequency response function for

different reduced-order models. The results are summarized by Figures 3.3-3.8.

Figures 3.4 and 3.7 show that Krylov reduced models can approximate very well

the frequency response function in the lower frequency range. This is because a

Krylov reduced model matches low-frequency moments of the full-order model,

which causes excellent approximation of H(jw) in the neighborhood of w = 0.

Figures 3.3 and 3.6 indicate that the balanced gain approach simply picks up

those modes that contribute the most to the L 2 output energy norm. Although

peaks of the dominant modes are exactly reproduced, there are static gain errors

in the lower frequency range for balanced gain reduced models. To improve the

approximation in the lower frequency range, we can include two Krylov modes

in the balanced gain modal basis. The reduced model, then, matches the first

two low-frequency moments CA-1B and CA-2B, which can produce exact

steady state step input response H(0) as shown by Figures 3.5 and 3.8.
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3.2.2 Control Design

Assume that the actuator is subject to zero-mean white noise with inten-

sity 1 and the sensor is contaminated by a zero-mean white noise disturbance

with intensity 10 -s. Based on each reduced-order model, an LQG control de-

sign can be carried out to minimize the performance index

1
J-- - lim E[]c_Mrk, r 4- xTKrx,. + puTu]

2 t"'-*O0

in which the first two terms represent the total energy of the reduced system

and the third term represents the control cost. The controller designed based on

reduced model, then, is applied to control the full-order structure. A positive

scalar p is used to adjust the relative weighting of the regulation cost and control

cost penalties. Overall controller authority, actuator mean-square force levels,

and controller bandwidth are all inversely proportional to p. The value of p

was varied from 0.01 to 1000 to study the closed-loop stability and controller

performance.

The results are summarized by Table 3.4 and Figure 3.9. The stability

comparison in Table 3.4 shows that for this example, modal truncation by re-

taining the lowest frequency modes yields more stable closed-loop designs than

other methods. Krylov reduced model appears to be the worst in the stability

comparison. This contradicts the results of another example in Ref. [37], in

which control design based on Krylov reduced models indicates much better

stability property and performance than controllers designed based on normal

mode reduced models. Modal truncation based on singular values and bal-

anced gains, and based on the mixed-mode method are about equal in yielding

a stable design. Figure 3.9 compares the performance of control designs based
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on different 8th-order reducedmodels. Modal truncation basedon lowest fre-

quency modes has the best performance while Krylov-based control design is

the worst. The balanced gain modal basis method and the mixed-mode method

exhibit comparable performance.
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Table 3.1: Natural frequenciesof plane truss structure

Mode Frequency Mode Frequency Mode Frequency
No. (Rad/sec) No. (Rad/sec) No. (Rad/sec)

1 1.8677 9 5.1279 17 8.9762
2 1.8861 10 5.9550 18 9.0349
3 1.9849 11 6.0958 19 9.1429
4 2.8460 12 6.5133 20 9.4214
5 3.7640 13 6.7425 21 11.069
6 4.0700 14 6.9224 22 11.558
7 4.9611 15 7.7759 23 12.838
8 5.1206 16 8.8845 24 12.992

Table 3.2: Singular valuesand balancedgains

Mode
6
1
2
5
8

20
7

14

19

12

10

3

Singular Value

ai Mode ai Mode

1.0938E-1 16 1.9229E-2 6

8.3539E-2 17 1.9080E-2 5

7.5481E-2 11 1.8951E-21 8

7.4065E-2 15 1.1891E-2 1

6.1759E-2 24 1.1881E-2 20

3.7187E-2 23 1.1126E-2 2

3.3461E-2 4 6.8545E-3 19

3.2379E-2 13 5.4472E-3 14

3.0609E-2 21 3.3258E-3 12

2.9923E-2 9 1.1986E7-3 7

2.8100E-2 22 8.2749E-4 10

2.1470E-2 18 6.1067E-4 16

Balanced Gain

¢rigl Mode crigi

1.9477E-4 17 1.3072E-5

8.2592E-5 11 8.7570E-6

7.8123E-5 24 7.3362E-6

5.2137E-5 23 6.3562E-6

5.2115E-5 15 4.3978E-6

4.2984E-5 3 3.6599E-6

3.4265E-5 13 8.0027E-7

2.9030E-5 4 5.3487E-7

2.3329E-5 21 4.8973E-7

2.2218E-5 22 3.1657E-8

1.8808E-5 9 2.9468E-8

1.3140E-5 18 1.3477E-8
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Moclel

Order

1

2

3

4
5

6

7

8
9

10

11

12

13

14
15

16

17

18

19
20

21

22

23

Table 3.3: Error norms of impulse response function

Based on Ai Based on _ri Based on algi Krylov Modes Mixed Modes*

7.1434E- 1""9.2897E- 1

8.6593E- 1

8.6056E- 1

8.5978E-I

7.3878E-I

4.5287E-I

4.2073E- I

3.0904E- I

3.0899E- I

2.8115E-I

2.6834E- I

2.3406E- l

2.3296E- I

1.9036E- I

1.8390E- I

1.6622E- I

1.4654E-I

1.4657E- I

9.6817E-2

2.0318E-2

1.9600E-2

1.9553E-2

1.0769E-2

7.1434E- 1

6.4331E-1

5.8027E-1

4.5903E-1
3.4782E- 1

2.7191E-1

2.3928E-1
1.9669E-1

1.4603E-1

1.1190E-1

8.4013E-2

7.8640E-2

6.0734E-2
4.1657E-2

2.8797E-2
2.2341E-2

1.2118E-2

2.7875E-3

2.0024E-3

8.2761E-4
1.0952E-4

6.6258E-5

1.9784E-5

5.9309E- 1

4.8189E- 1

4.1087E- 1

3.3495E- 1
2.7191E-1

2.2124E- 1

1.7866E- 1

1.4454E- 1
1.1190E-1

8.4013E-2

6.6106E-2

4.7029E-2

3.4170E-2

2.3947E-2

1.4617E-2
8.1601E-3

2.7875E-3

1.6128E-3

8.2761E-4

1.0952E-4
6.3041E-5

1.9784E-5

1.0082E+0

1.2159E+0

1.0367E+0

5.6607E+0
1.0683E+0

4.1616E+0

1.0384E+0
2.2132E+0

2.1238E+0
2.5662E+0

2.6191E+0

2.5230E+0

1.6895E+0

1.3701E+0

1.3418E+0
6.4551E-1

8.2138E-1

7.3783E-1

7.0348E-1

5.9209E-1
6.2487E-1

5.5446E-1

1.6457E-1

8.9475E- 1

6.7110E- 1

8.0917E- 1

7.7403E- 1

9.1157E-1

3.2963E- 1

3.7733E- 1
4.9722E- 1

6.5646E- 1

3.9786E- 1

2.3394E- 1

1.2998E-1

1.5327E- 1

8.9277E-2
1.0390E-1

5.7178E-2

3.2111E-2

4.9123E-3

2.7161E-3
6.7804E-4

2.7408E-4

*Mixed-Modes: 2 Krylov modes plus balanced gain modal basis.
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Table 3.4: Stability of controllers

Controller

SV8

SV10

SV12

SV14

BG8

BG10

BG12

BG14

MM8

MM10

MM12

MM14

KRY8

KRY10

KRY12

KRY14

NOR8

NOR10

NOR12

NOR14

p = 0.01 0.1 1 10 100 iO00

U U U S S S

U U U S S S

U U U S S S

U U U S S S

U U U U S S

U U U S S S

U U U U S S

U U S S S S

U U U S S S

U U U U S S

U U S S S S

U U U S S S

U U U U S S

U U U U S S

U U U U S S

U U U S S S

U U S S S S

U U S S S S

U U S S S S

U U S S S S

U: Closed-loop system is unstable. S: Stable.

SV: Singular value modal basis.

BG: Balanced gain modal basis.

MM: 2Krylov modes plus balanced gain modal basis.

KRY" Krylov reduced model.
NOR: Lowest normal mode basis.





Chapter 4

CONTROLLER REDUCTION

Conventional Linear Quadratic Gaussian (LQG) controller design usually

leads to a controller with an order about the same as the order of the original

system to be controlled. A controller design based on the H °° theory may be of

much higher order than the plant. For large scale systems it is, in many cases,

necessary to reduce the controller to a smaller order for the purpose of easy

implementation and economical computation. The reduced-order controller,

however, should not affect the closed-loop stability or degrade the performance

too much.

In recent years there has been extensive research devoted to the topic

of controller reduction. Among a myriad of controller reduction methods, one

class of methods based on the state-space formulation can be called projection

methods [9, 22, 45]. The controller system equation is usually first projected,

or transformed, to new coordinates in which the contribution of each controller

state to the overall closed-loop control performance can be meaningfully defined

and evaluated. Then, the reduction strategy is to eliminate those states with

the least contribution to the performance. This type of approach is referred as

Linear-Quadratic Reduction in Ref. [13] because the reduced-order controller

is obtained by performing reduction to the full-order LQG controller.

The major task in LQG reduction is to find an appropriate projection

69
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subspacefor controller systemtransformation and reduction. Sincecontroller

reduction is a closed-loopproblem, it is required to take not only the controller

systemitself but also the closed-loopsystem as a whole into consideration in

the searchfor a truncation basis. Therefore,as it is usually addressedin the

literature, a controller reduction problem is different from a model order re-

duction problem. The componentcost analysis (CCA) method of Skelton et

a1.[45]performs reduction basedupon the participation of the controller states

to a quadratic closed-loopperformancemetric. The balancedcontroller reduc-

tion method [22] balancesthe two algebraic Riccati equations which arise in

the LQG design. In Ref. [9] there are three morebalancedcontroller reduction

algorithms which balanceLyapunov equationsinvolving system and controller

matrices. All these methods are projection methods with the choice of pro-

jection subspacemoreor lessbasedupon closed-loopconsiderations.However,

despitethe fact that the strategyfor controller reduction is somewhatdifferent

from that of model order reduction, it is still true that if a reduced-ordercon-

troller canapproximate the input-output characteristicsof the full-order LQG

:controller well, then it should also have a fairly good closed-loop performance.

Therefore, an efficient model order reduction Scheme might very well be applied

to controller reduction.

The controller reduction algorithm presented in this chapter can be con-

sidered as a model reduction method applied to controller reduction. The pro-

jection subspace used is a Krylov subspace generated by a Krylov recurrence

procedure. The reduced-order controller is called an Equivalent Impulse Re-

sponse Energy Controller (EIREC) because it has the same impulse response

energy as the full-order controller. Since the proposed controller reduction
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method is, in fact, a model-order reduction method applied to a controller,

it is applicable to controllers obtained by any of the existing control design

approachesand is not restricted to the LQG design. This is one advantage

over the balancedcontroller reduction methods ([9, 22, 46]), which are based

upon the two Riccati equations which arise in the LQG design. However,the

only controller consideredin this chapter is the LQG controller, becausethe

examplesillustrated aredrawn from other LQG controller reduction literature.

Computationally, the methodin this chapter requires solving a Lyapunov equa-

tion of order equal to the order of the controller to be reduced. For a real large

scale system, this can be very expensive. Therefore, the method in this chap-

ter is recommended for order-reduction of controllers with moderate scale. The

reduction algorithms developed in this chapter can also be used to reduce the

order of an open-loop plant.

The organization of this chapter is as follows. In Section 4.1, the problem

of LQG controller reduction is briefly reviewed and the concept of preserving

the impulse response energy is introduced. Then, two algorithms for generat-

ing projection subspaces for controller system transformation are presented in

Section 4.2. In Section 4.3, some properties of the reduced-order controller, like

energy-equivalence, stability, minimallty, and moment-matching are depicted

and proved. Finally, in Section 4.4, two examples drawn from other controller

reduction literature are used to test the proposed algorithm. Comparisons with

other methods are made. Part of the material in this chapter is presented in

Ref. [351.
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4.1 LQG Controller Reduction Problem

The system to be controlled is a linear, finite dimensional, time-invariant

system described by

i, = Az + Bu + Nw
(4.1)

y=Cz+v

where z E R n is the state variable vector, y E R rn is the output variable vector,

and u E R I is the input variable vector. A, B, and C are the system matrix,

input distribution matrix, and output distribution matrix, respectively. The

disturbance noises w and v are assumed to be uncorrelated zero-mean white

noise processes with intensities 142 >_ 0, Y > 0, respectively. The system is

assumed to be controllable and observable. The LQG design problem is to find

a controller which minimizes the performance index

g = lim E[zTQz + u TRu] (4.2)
t--* oo

with Q >_ o, and R > 0, the weighting matrices. The optimal controller is of

the form [26]

71= Eq + Fy
(4.3)

u =Gq

where q E/P is the controller state, and

E = A + BG - FC

F = _pcTy -1 (4.4)

G = -R-1BTS

where :P and S satisfy the algebraic Riccati equations

AP + _A T - "pcTy-IC"P "b NWN T "- 0

(4.5)
ATS + SA - SBR-1BTS + Q = 0
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The controller reduction algorithm presented in this chapter is designed

to reduce the order of the controller, Eq. (4.3). The projection subspace em-

ployed is a Krylov subspace, which is generated by a Krylov recursive process.

The recursive process uses the inverse of the controller system matrix E to gen-

erate vectors recursively. The starting subspace is chosen to be the F matrix

(or G T matrix) so that the generated Krylov subspace is, in fact, equivalent

to the generalized controllability (or observability) subspace. The generated

Krylov vectors are normalized such that when the controller system equation

is projected onto the Krylov subspace, the controllability (or the observability)

grammian is equal to the identity matrix and the transformed G (or F) matrix

has a special form with nonzero elements only in the first block.

Since the output of the controller is to be used to control the original

system, the proposed reduced-order controller preserves the impulse response

energy of the full-order controller. In this way, although the reduced-order con-

troller might have a response profile which deviates very much from that of the

full-order controller, the control energy in some sense is the same. The impulse

response energy is defined as the L 2 energy norm of the impulse response of

the controller

E = IIHII , = tr[ Hrn dt] (4.6)

where H = Ge_tF is the impulse response of the controller. It is assumed that

the full-order controller is an asymptotically stable system. If the full-order

controller is not asymptotically stable, one can separate the unstable part and

the stable part and perform model reduction only on the stable part. The
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impulse response energy can further be expressed as

E/0$ = tr FTeErtGTGeEtFdt]=tr[FTWoF]

= tr GeEtFFTeErtG r dr] = tr[aW_G r]

(4.7)

where Wo and W_ are the observability and controllability grammians. From

Eq. (4.7) it is clear that the triple (E, F, G) and its dual (E T, G T, F T) have the

same impulse response energy. Hence, two equally applicable algorithms, one

based on (E, F, Wo) and the other based on (E T, G T, We), can be developed

for producing an Equivalent Impulse Response Energy Controller.

4.2 Equivalent Impulse Response Energy Controller

Reduction Algorithm

In this section, two algorithms for generating projection subspaces for

controller system transformation are presented. The new coordinates to which

the controller system equation is transformed are called normalized grammian

coordinates because they are coordinates in which either the controllability

grammian or the observability grammian is the identity matrix. Controller re-

duction is based upon the representation in the new coordinates. The subspace-

generating algorithm is a recursive process with either the F matrix or the G T

matrix as the starting subspace. It is assumed that either the number of actu-

ators, l, or the number of sensors, m, is much less than the number of states, n,

so that the algorithm can work and the reduction of the controller can actually

be achieved. The first algorithm is used to generate a subspace that normalizes

the observability grammian.



Algorithm 4.1 (EIRECWo Algorithm)

(1.) Calculate the observability grammian Wo.

ErWo + WoE + ara = O, (Wo> O)

(2.) i = 1. Perform singular-value decomposition on FTWoF.

FTWoF = UEU T

U=[U, Uz], E=[ Z'' 0]
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(4.8)

(3.) Form R = E-ILi.

(4.) Orthogonalize R with respect to Lj, for j = 1 to i.

RTWoLj = O, j = 1 to i

(5.) Perform singular-value decomposition on RTWoR.

L1 = FU,,E-_ ½

RTWoR = UEU T

v = [uo v_], _ =

1

IrE = 0 stop; else Li+l = RU, E'_ _.

(6.) i=i+l, goto3.

ization to get Lx.

Retain only the nonzero singular-value portion and perform normal-
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The projection subspace is formed as L = [Lx L2 " "] in which each Li is

a matrix containing a set of vectors and will be referred to as a block of vectors,

or, simply, a block. Since the vectors in Li are normalized with respect to Wo,

the L subspace satisfies

LTWoL = I (4.9)

By using the above identity, the controller system equation can be transformed

to the normalized observability grammian coordinates as

u=(_ (4.10)

where

q = Lq

and where the transformed system matrices are given by

= LTWoEL

p = LTWoF = [pT 00-" 0] r (4.11)

O=GL

The transformed P matrix has nonzero elements only in the first block. _P

attains this special form because the starting subspace is F, and L is 1410-

normalized.

As mentioned in Section 4.1, the dual triples (E, F, G) and (E T, G T,

F T) have the same impulse response energy. Therefore, we have the following

algorithm which normalizes the controllability grammian.
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Algorithm 4.2 (EIRECWc Algorithm)

(1.) Calculate the controllability grammian We.

EWc+ WeE T + FF T = O, (We >_ O) (4.12)

(2.) i = 1. Perform singular-value decomposition on GWcG T.

GWcG T = UEU T

U=[U, Up], Z=[ E'_ O]

Retain only the nonzero singular-value portion and perform normal-

ization to get L1.

L1 = GTu1Y_'l ½

(3.) Form R = E-TLi.

(4.) Orthogonalize R with respect to Lj, for j = 1 to i.

RTWcLj = 0, j=l toi.

(5.) Perform singular-value decomposition on RTwcR.

!

IfE = 0 stop; else Li+_ = RU_E'_ _.

(6.) i=i+l, goto3.



78

Algorithm 4.2 is the dual version of Algorithm 4.1 for the triple (E w, G T,

FT). Therefore E T is used for subspace recursion with G T being the starting

subspace. The L subspace generated by Algorithm 4.2 satisfies

LTWcL= I (4.13)

and the transformed controller system matrices in the normalized controllabil-

ity gramrnian coordinates are

= LTEWcL

f'=LTF (4.14)

= GWcL = [(_1 0 0 ... 0]

with the transformed G matrix having nonzero elements only in the first block.

To perform controller reduction, let the transformed controller system

equation (4.10) be partitioned as

U

(4.15)

where subscripts n and r denote r_etained and truncated portion, respectively.

The reduced-order controller is the R-portion of the above equation

=  RqR+ PRY
u = (_RqR (4.16)

Obviously, /_R = LTWoELR (or LTEW_LR for Algorithm 4.2), FR = LTnWoF

(or LTF), and GR = GLR (or GW_LR) if L is partitioned as L = [LR LT].

Therefore, only LR is needed to produce the reduced-order controller. The

subspace recursion process does not have to be carried out completely until it
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stopsat Step4. It canbe terminated wheneverthe numberof vectorsgenerated

is equal to the predeterminedorder of the reducedcontroller.

As to which algorithm shouldbeused;it dependson the numberof actu-

ators and the number of sensors.It will be shownlater that the reduced-order

controller has the property of matching a certain number of system parame-

ters of the full-order controller. The more blocks of vectors included in Ln,

the more system parameters that are matched. In order to match more sys-

tem parameters, it is desirable that the size of each block of vectors in LR be

small. Therefore, Algorithm 4.1 is preferred for a system with fewer sensors

than actuators; otherwise Algorithm 4.2 is preferred.

4.3 Some Properties of the Equivalent Impulse

Response Energy Controller

Some properties discovered for the reduced-order controllers obtained in

Section 4.2 are listed here.

Proposition 4.1 The subspacc L generated by either of the Equivalent Impulse

Response Energy Controller Reduction Algorithms proposed in Section _.2 is

both controllable and observable. If the algorithm terminates before n vectors

are generated, then the full-order controller is not minimal. A minimal optimal

controller can be produced by projecting the full-order controller onto the L

subspace.

As noted in Ref. [46], the optimal full-order controller obtained from the

LQG design is, in general, not minimal even if the system to be controlled is

minimal. In other words, the controller itself is not a completely controllable



80

and/or not acompletelyobservablesystem. Therefore,there might exist a con-

troller of order smaller than n which still yields the same performance as the

full-order LQG controller. An efficient controller reduction algorithm should

have the capability to detect and to produce such a minimal-order controller, if

it exists. The reduction method proposed here meets this requirement. Before

proving minimality of the reduced-order controller, a relationship between the

observable subspace (controllable subspace) and observability grammian (con-

trollability grammian) needs to be clarified. To the author's knowledge, this

relationship has not been fully exploited in linear systems textbooks.

Theorem 4.1 Let the controllability grammain We be expressed in the eigen-

value decomposition form

where _c and _,_ are eigen-subspaces associated with non-zero and zero eigen-

values, respectively. Then, the ¢,,c subspace is the uncontrollable subspace of

the system. The _ subspace is the controllable subspace, and it is the same sub-

space spanned by the linearly-independent column vectors of the controllability

matrix.

Proof:

grammian satisfies

AWe + WcA T -J- BB T = 0

Under the similarity transformation

Jt = CT A¢, [_ = CT B,

For an asymptotically stable system (A, B, 67), the controllability

6'=C_
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the controllability grammian for the transformedsystembecomeso2TvI?'c_ = A

and satisfies

hA + A_t T + BB T - 0

or, in partitioned form

[All A12 0 0A2, A.2_ ] [ A_o
The above equation leads to

A,,A_ + A_AT1 +/_,/_T = 0

and

/3_ = 0, AI_ = 0, A_I = 0

Therefore, (fl, n,/31, C_) is the controllable part of the system. And hence ¢c

is the controllable subspace and ¢,,c is the uncontrollable subspace. •

There is a similar theorem for the observability grammian.

Theorem 4.2 Let the observability grammain Wo be ezpressed in the eigen-

value decomposition form

,ooo.oj[A°0][ ]OoAoO o=(4.18)

where _o and OPuo are eigen-subspaces associated with non-zero and zero eigen-

values, respectively. Then, the _o subspace is the unobservable subspace of the

system. The _P[ subspace is equivalent to the subspace spanned by the linearly-

independent row vectors of the observability matrix.
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Proof: Although a proof similar to that for the controllability grammian can be

approached from the Lyapunov equation, we will prove it by using the definition

of the unobservable subspace. For the triple (A, B, C), an unobservable state

Zo is a state that has no contribution to the output and satisfies

y "- CeAtzo = 0 for t > 0 (a)

We want to prove that if z0 satisfies Eq. (a), then it is in q_,,o and is orthogonal

to (_o"

It can be shown that

_0 °°
ilyll yTy = zTWozo T W= = Zo ¢oAo¢o Zo (b)

If z0 satisfies Eq. (a), then I[y[I2 in the above equation is equal to zero which

T T
leads to ¢o Zo = 0. If ¢ozo = 0, then llull2 = 0 which leads to y = 0

and z0 is an unobservable state. Therefore, the unobservable state is in the

subspace q),,o. Finally, by recalling that Ce at and the observability matrix

[C T, CTAT,...,CT(AT)"-_] T play same role in the observability study [33],

the conditions ¢oZz0=0 and CeAtzo=O simply state that ¢oT is the same sub-

space spanned by the row vectors of the observability matrix. This completes

the proof. •

By using the relationships between the grammians and the observable

subspace and controllable subspace, Proposition 4.1 can be proved as follows.

Proof: The following proof is for Algorithm 4.1. The proof for Algorithm

4.2 is similar. Apparently, the R vector generated at Step 3 in Algorithm

4.1 is contained in the generalized controllability matrix [F E-1F ... E-(i-1)F].

Therefore, R is in the controllable subspace. At the normalization step (Step
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5, singular-value decomposition), the unobservablepart is removed from R

because RTWoR = RT¢oAo(_ToR is singular if and only if the column vectors

in R are linearly-dependent and/or R is orthogonal to (I)o. Therefore, to retain

only the nonzero singular-value portion is to retain only the observable subspace

in L. If the algorithm terminates at Step 5 before n vectors are generated, then,

obviously, the full-order controller is not minimal. The reduced-order controller

obtained by projecting the full-order controller onto the L subspace is a minimal

controller. •

The full-order controller is assumed to be asymptotically stable. The

reduced-order controller has the following stability property.

Theorem 4.3

(1.)

(2.)

The reduced-order controller obtained by Algorithm 4.1 is asymptotically

stable if and only if (E_, Gn) is observable.

The reduced-order controller obtained by Algorithm 4._ is asymptotically

stable if and only if (/_, .F'n) is controllable.

(3.) The unstable poles of the reduced-order controller lie on the imaginary axis.

Proof." There is a similar proof in Ref. [41].

upon the previous formulation.

(1). Premultiply and postmultiply Eq. (4.8) by L T and Ln respectively.

LTETWoLR + LTWoELR + LTGTGLR - 0

Then,

The proof shown here is based

-T-
_T + F-,n + GRGn = 0 (4.19)
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By the uniquenessof the solution of

-T -T -
ERWoa + WoaEa + GRGn = 0

if/_a is asymptotically stable, then the observability grammian for (/_n, G_n)

is the identity matrix, which is nonsingular, and hence (ER, G_R) is observable.

And, if (/_R, GR) is observable, then the observability grammian of (ER, GR) is

the identity matrix, which is positive definite, and hence ER is asymptotically

stable.

(2). The proof is similar.

(3). A proof for the location of unstable poles is given in Ref. [32] and repro-

duced in Ref. [41]. Therefore, it is omitted here. •

The reduced-order controller is called an Equivalent Impulse Response

Energy Controller because it conserves the impulse response energy of the full-

order controller.

Proposition 4.2 If the reduced-order controller obtained by Algorithm 4.1 or

Algorithm 4.2 is asymptotically stable, then it has the same impulse response

energy as the full-order controller. The impulse response energy is defined as

the L2-norm of the impulse response of the controller, Eqs. (4.6), (4.7).

Proof: For Algorithm 4.1, the observability grammian for the controller system

in L-coordinates is the identity matrix. Since the defined impulse response

energy is invariant under coordinate transformation, it can be shown that

E = tr[FTWoF] = tr[FWF] = tr[FTPR] (4.20)

due to the special form of the P matrix.

The proof for Algorithm 4.2 is similar. •
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In fact, aswill be depicted in Theorem 4.4, the reduced-ordercontroller

matchesa set of systemparametersof the full-order controller, and the impulse

responseenergy is oneof the parametersmatched. Furthermore, the following

proposition, which is similar to the one in Ref. [24] can be used to calculate

the error norm of the impulse responseenergy.

Proposition 4.3

sured by

The error of the impulse response H_=H-HR can be mea-

IIg_llb = tr[_ °° HTH, dr] = 2tr[FTWoF]- 2tr[FTZp] (4.21)

where Z satisfies

or by

F,[Z + z_, + OT.O= o

Hj-I[ dt] - 2tr[GWcG T] - 2tr[ORXO T] (4.22)

F,R X + X F-_T "_- PRfi -'T =- 0

Proof: For Eq. (4.21),

IIH, H2L2 = IIHII2L2 + IIHRII2L2 -- 2tr[ fo °°

= 2tr[FTWoF]- 2tr[F'Tz_P]

_T ]_t,_T,_ ]_t _-,
e oRo, e rdt]

with Z satisfying the corresponding Lyapunov equation. Eq. (4.22) can be

proved similarly. •
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Another interesting property of the reduced-ordercontroller, in addition

to preserving the impulse responseenergy, is that it matchesa set of sys-

tem parameters. This set of parameters includesthe so called low-frequency

momentsand low-frequencypowermoments[41]. For the triple (A, B, C), low-

frequency moments, sometimes called time moments [15], are defined as CA-iB

for i > 0, which are the coefficient matrices of the Taylor series expansion of

the transfer function. Low-frequency power moments are defined in Ref. [41]

as CA-iWc(AT)-JC T with i,j > 0 and Wc the controllability grammian. Be-

sides low-frequency moments and low-frequency power moments, other mean-

ingful parameters are Markov parameters CAIB and the high-frequency power

moments CAiWc(AT)JC T. The q-COVER method of Yousuff et al. [47] pro-

duces a reduced-order controller that matches q Markov parameters and q high-

frequency power moments CAiWcC T which are the derivatives of the output

covariance matrix. Since these parameters and moments constitute sets of data

that can describe the system transfer function and output autocorrelation, it

is reasonable to seek a reduced-order system that matches as many parame-

ters of the full-order system as possible. The reduced-order controller proposed

here turns out to match the low-frequency moments and low-frequency power

moments because the projection subspace is the generalized controllability (or

observability) matrix.

Theorem 4.4:

(1.) If the full-order controller is observable, then the reduced-order controller

(/_R, Fa, Ga) obtained by Algorithm 4.1 matches:

low-frequency moments GE-iF, i = 1,2,..., k - 1
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low-frequency power moments FT(ET)-iWoE-JF, i,j = 1, 2,..., k - 1

where k is number of blocks contained in the projection subspace Ln =

[L1 L2 ... Lk].

(2.) If the full-order controller is controllable, then the reduced-order controller

(F-,R, FI_, Gn) obtained by Algorithm 4.2 matches:

low-frequency moments GE-iF, i = 1, 2,..., k - 1

low-frequency power moments GE-iWc( ET)-JG T, i,j = 1,2,..., k - 1

where k is number of blocks contained in the projection subspace Ln =

[L1 L2 ... Lk].

(3.) If the full-order controller is neither controllable nor observable, but has the

same controllable subspace as observable subspace, then the above moment-

matching properties still hold.

Proof: (Part of the proof shown here follows a similar proof given in Ref. [41]).

(1). If the full-order controller is observable, then the subspace LR is equal to

the generalized controllability subspace [F E-1F E-2F ... E-(k-1)F]. So E-iF

can be represented as a linear combination of Ln

E-iF = LR_

Then,

LRLTWoE-'F= LaLraWoLRa= Laa= E-'F, fori=O,l,...,k-1
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Secondly,by using the aboveequality, it canbe shownthat

LTWoE-iF T -i T i T -i= (LRWoEs) (L,WoER) LRWoE F

T -i T i-1 T T -i
= (LRWoER) (LRWoER) LRWoE(LRLRWoE F)

T -i T i-1 T -(i-1)= (LsWoER) (LRWoEs) LsWoE F

T -i T
= (LRWoELR) LsWoF

= (/_R)-'Fs for i = O, 1,...,k- 1

Therefore,

GR(E,R)-' ff'R = GLR(LTWoE-'F) = GE-'F, for i= 0, 1,...,k- 1

The low-frequency power moment matching property can be proved similarly.

-T -T -i - -j-
F_ (Es) (ER) F_ = FT(ET)-'WoL_LTWoE-JF = FT(ET)-iWoE-JF

for i,j = O,1,...,k- 1.

(2). Similar proof for Algorithm 4.2.

(3). If the controllable subspace and the observable subspace are the same,

then it is true that LR is equal to [F E-1F E-2F ... E-(k-0F] for (1), and

the same proof follows. •

It is to be pointed out here that the low-frequency power moments

FT(ET)-iWoE-JF in (1) are not the same as the low-frequency power mo-

ments defined in Ref. [41]. The low-frequency power moments defined here are

not related to the coefficient matrices of the Laurent series of the output power

spectral density. Nevertheless, they still constitute pieces of data for parame-

ter matching. The other thing to be mentioned is that if E instead of E -1 is
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used in the Algorithm 4.1 to generatethe projection subspace,then the gen-

erated subspaceis equivalent to IF EF E2F ... Ei-IF]. The reduced-order

controller would match the Markov parameters and high-frequency power mo-

ments and hence would be a q-COVER. However, numerical experience shows

that matching high-frequency moments gives a poor reduced-order controller

compared with matching low-frequency moments. At least for the two exam-

ples shown in the following section, matching low-frequency moments produces

a reduced-order model with much better closed-loop performance.

4.4 Examples

4.4.1 Controllers For A Four-DiskSystem

The first example is given by Enns [10] and is used in Ref. [13] and

Ref. [28] to compare six different controller reduction methods. It is used as

an example here to illustrate the efficiency of the current controller reduction

method. The plant to be controlled is a four-disk system and is linear, time-

invariant, SISO, neutrally-stable, non-minimum phase, and of eighth order.

Numerical values of the system A, B, and C matrices (in observable canonical

form), the weighting matrices Q and R, and the noise intensities ]) and kV are

A

-0.1610 1 0 0 0 0 0 0

-6.0040 0 1 0 0 0 0 0

-0.5822 0 0 1 0 0 0 0

-9.9835 0 0 0 1 0 0 0

-0.4073 0 0 0 0 1 0 0

-3.9820 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0



BT= [0, O, 0.0064, 0.00235, 0.0713, 1.0002, 0.1045, 0.9955]

C=[IO000000]

N=B

Q=(1.0xl0-6)HTH; H=[00000.55 11 1.32 18.0]

R=I

_4_ = q2 (q2 = 0.01, 0.1, 1, 10, 100, 1000, 2000)

V=I

9O

Disturbance noise intensity parameter q2 is used as a design parameter.

For this SISO system, we can use either Algorithm 4.1 or Algorithm 4.2. These

two algorithms give exactly the same results.

First, different full-order optimal controllers are obtained by LQG de-

sign for different values of q2 (q_ = 0.01, 0.1, 1, 10, 100, 1000, 2000). Then,

order reduction is carried out on each full-order controller. We have checked

the closed-loop system stability of each reduced-order controller and summa-

rized the results in Table 4.1 to compare the current method (EIREC method)

with the other methods. Nc in Table 4.1 is the order of the reduced-order

controller. We see that only the optimal projection method produces stable

designs for all cases. This is because the optimal projection method is not a

linear quadratic reduction method which performs reduction to the full-order

optimal controller obtained by LQG design. Instead, the system matrices of

an optimal projection reduced-order controller are obtained by solving a pa-

rameter optimization problem which minimizes the performance index J in Eq.

(4.2). Therefore, in theory, the optimal projection method should produce an
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optimal reduced-ordercontroller which is guaranteedto stabilize the closed-

loop system, if the solution schemeconvergesto an appropriate solution at

all. Hence, at least from a theoretical point of view, all the other methods

cannot competewith the optimal projection method in regard to stability and

performance. However,computationally, the other linear quadratic reduction

methods arecertainly moreefficient than the optimal projection method. Here

we comparethe current method only with the other linear quadratic reduction

methods.

The stability comparisonis apparentfrom Table4.1. The EIREC method

is better than Glover'smethod[12],Davis and Skelton's balancedcontroller re-

duction method[9],andYousuffandSkelton'sComponentCost Analysis(CCA)

method[45], but is not so good as Enns' method[10] and Liu and Anderson's

method[28] asfar asabsolutepercentageof stable designsis concerned.How-

ever, one interesting thing to note is that the current method seemsto have

a trend that if the lower-orderreducedcontroller can producea stable closed-

loop system, then the higher-orderone alsocan. This trend is not seenin the

other methods. It is usually expectedand preferred that a higher-order con-

troller hasbetter performanceand stability than a lower-order controller. In

addition to stability comparisons,the accuracyof closed-loop response is also

compared. Comparisons of unit step responses and unit impulse responses for

a second-order controller designed with q2 = 1.0 and a fifth-order controller

designed with q2 = 100 are shown in Figures 4.1-4.8. It is seen that for the

low noise intensity case, the second-order controller produced by the current

method has about the same performance as the controller obtained by methods

1 and 5. For the high noise intensity case, although the fifth-order controller
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producedby the current method givesa stableclosed-loopsystem,the damping

is very low (the closed-looppolewith the leastdamping is -0, 0022=t:1.3792i).

However, the sixth-order controller has quite accurate closed-loopresponses

(Figures 4.9, 4.10).

4.4.2 Controllers For A Solar Optical Telescope Spacecraft

The second example considered here is the pointing and shape control

of the "Solar Optical Telescope" spacecraft example discussed in Ref. [45] and

Ref. [16]: The original model has 44 modes and is reduced to 10 modes by

modal cost analysis as discussed in Ref. [45]. In the first-order state-space

form, the matrices describing this 20-state problem are given by

[0 ,,0] [0] c E 0,A= -w 2 -2¢w ' B=N= _ ,

¢ = o.ool

w = diag[14.853,0.914, 10.817, 3.652,153.43, 53.861, 3.63,149.37, 0, 0]

Q= 0 0 10 0 [7'0], R=pls
0 0 10 -3

W = lO-41s, ]) = I0-1513

with matrices/_ and P given in Table II of Ref. [45].

Design parameter p in the control weighting matrix R was varied to study

controllers of different bandwidth. Since in this problem there are fewer sensors

than actuators, Algorithm 4.1 is used to carry out the reduction. The design

comparison is to plot the regulation cost J, = E[xTQx] versus the control cost
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Ju = E[ uTu] for different orders of controller and for different values of p. The

results are shown in Figures 4.11-4.13. Comparing Figures 4.11 and 4.12, it

is seen that the tenth-order reduced-order controller obtained by the current

method has a slightly better performance than the tenth-order controller ob-

tained by component cost analysis. The sixth-order case of the current method

is, however, not as good as the one produced by the component cost analysis.

The fourth-order case of the current method is not shown in Figure 4.12 be-

cause the curve lies outside of the window (For p = 0.5, 1, 5, 10 the control

costs are 1.3897E-7, 1.3650E-5, 1.3240E-5, 1.3114E-5, and the regu-

lation costs are 7.9732E- 8, 1.3105E- 7, 4.2024E- 7, 6.9699E- 7). Figure

4.13 shows smoother cost curves of the sixth, tenth, and twelfth-order reduced

controllers of the current method. It is seen again here that the higher-order

controller tends to have better performance than the lower-order controller. In

contrast to this appealing result, component cost analysis produces a fourth-

order controller with better performance than the sixth and tenth-order con-

trollers (see Figure 4.11). In addition to this performance comparison, we have

also checked the closed-loop stability. It is seen that for the current method,

all of the reduced-order controllers with order higher than three produce stable

closed-loop systems for all p values from 0.01 to 1000. On the other hand,

the tenth-order controller and the fourth-order controller of component cost

analysis fail to give stable designs for p < 0.05 and p < 0.5, respectively.

From the above two examples, one can see that the present controller

reduction method produces fairly good closed-loop designs. Computationally,

the current method is also economical compared with the other methods. Enns'

frequency-weighted balanced realization method requires solving two Lyapunov
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equations of order larger than n (order of the full-order controller), depend-

ing on the order of the input and output weightings, in addition to solving

one unsymmetric eigenvalue problem of order n. The stable factorization and

balancing method of Liu and Anderson [28] and the two balanced controller

reduction algorithms of Yousuff and Skelton [46] and of Davis and Skelton [9]

all involve the solution of two Lyapunov equations and two singular-value de-

compositions of order n. The component cost analysis method requires solving

one Lyapunov equation and two singular-value decompositions of order n. The

current controller reduction method needs to solve only one Lyapunov equa-

tion of order n and to perform some small scale singular-value decompositions.

Therefore, the computational burden of the current method is lower than that

of the other methods.
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Table 4.1: Stability of the reduced-order controller by different methods

Method N¢ 1;=.01 0.1 1 10 100 1000 2000
1 Enns[10] 7 S S S S S S S

6 S S S S S S S
5 S S S S S S S
4 S S S S S S U
3 S S S S S S S
2 S S S S U U U

2 Glover[12] 7 S S S S S U S
6 S S S S U U U
5 S S S S U U U
4 S S S S U U U
3 S S U S U U U
2 S U S U S U U

3 Davis &

Skelton[9]

7 S U U S S S S
6 S S S S S S S
5 S U S S S U U
4 S S U S S U U
3 U U U S U U U
2 S U S S U U U

4 Yousuff &
Skelton[46]

7 S S S S U U U
6 S S S S U U U
5 S S S U U U U
4 S S S U U U U
3 S U U U U U U
2 S S S U U U U

5 Liu &
Anderson[28]

7 S S S S S S U
6 S S S S S S U
5 S S S S S S S
4 S S S S S S S
3 S S S S S U U
2 S S S S S S S

6 Optimal
Projection[13]

7 S S S S S S S
6 S S S S S S S
5 S S S S S S S
4 S S S S S S S
3 S S S S S S S
2 S S S S S S S

7 EIREC
Method

7 S S S S S S S
6 S S S S S S S
5 S S S S S U U
4 S S S S S U U
3 S S S S U U U
2 S S S S U U U

S: the closed-loop system is stable. U: unstable



Chapter 5

CONCLUSIONS

A decentralized suboptimal linear quadratic design procedure which com-

bines substructural synthesis, model reduction, decentralized control design,

and controller reduction is proposed for the control design of flexible struc-

tures. The structure to be controlled is decomposed into several substructures

by using substructuring decomposition. Then, a Krylov model reduction al-

gorithm is employed to reduce the order of each substructure to a size that is

Riccati-solvable. For each substructure, a subcontroller is designed by using a

linear quadratic optimal control method. After all subcontrollers are designed,

a controller synthesis scheme called Substructural Controller Synthesis is used

to assemble all subcontrollers into a global controller. Finally, a controller

reduction scheme which produces a reduced-order controller with equivalent

impulse response energy is used to reduce the order of the global controller to

a reasonable size for implementation.

Substructural Controller Synthesis (SCS) is a decentralized control de-

sign scheme for flexible structures. The method relieves the computational

burden associated with dimensionality. The SCS design scheme is a highly

adaptable controller synthesis method for structures with varying configura-

tion, or varying mass and stiffness properties.

Equivalent Impulse Response Energy Controller (EIREC) Reduction A1-

103
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gorithm is an efficient controller reduction method. The method producesa

reduced-ordercontroller that preservesimpulse responseenergy and matches

low-frequencymoments and low-frequencypower moments of the full-order

controller. It is a model reduction algorithm applied to controller reduction

and is applicableto controllersdesignedby any existing methods.

Somerecommendationsfor future researchdirection are listed below.

• Robustnessof SCScontrollersis an interesting topic and needsto be inves-

tigated.

• Application of substructuring decompositionand Substructural Controller

Synthesisto generallinear time-invariant systemsneedsto beexplored. A

systemrepresentationin Lanczoscoordinatesmay bea good starting point

for substructuring decompositionand SCSanalysis.

• Incorporation of Substructural Controller Synthesiswith the well-developed

ComponentMode Synthesis(CMS) is anotherpossibility for designingcon-

trollers for flexible structures.

Suboptimality and stability of SCScontrollers is an important topic. It

would elevatethe SCS method from a design techniquelevel to a control

theory level if a suboptimality study similar the one in Ref. [20] can be

accomplished.
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